从O(k*n)到O(1):如何用哈希表终结多层if判断的性能困局
【前言】
本文将以哈希表重构实战为核心,完整展示如何将传统条件匹配逻辑(上千层if-else判断)转化为O(1)的哈希表高效实现。通过指纹验证场景的代码级解剖,您将深入理解:
1.哈希函数设计如何规避冲突陷阱
2.链式寻址法的工程实现细节
若有出错之处,望各位大哥大姐指出(●’◡’●)
Ⅰ 背景
最近,拿到一个场景,有一个研判规则中,需要一次匹配上千个以上规则的规则,一开始采用的是多层if判断,但是这种在高频事件中,明显性能遭不住,而且在研判速度上远远达不到预期
最初代码如下
bool is_finger(char finger[]){if (strlen(finger) == yyy){return 0;}if (strlen(finger) == xxx){return 0;}//………………还有几千个规则研判
}
【目标】将程序的时间复杂度O(k*n),降至O(1)
【实现】可以采用两种,一是哈希表,二是字典树
Ⅱ C程序优化实践
说那么多,没啥用,直接实操,冲冲冲
先定义下变量和结构体
#define HASH_SIZE 1024 // 哈希表大小,应该是质数以减少冲突typedef struct HashNode {char* key;struct HashNode* next; // 处理冲突用的链表
} HashNode;typedef struct {HashNode* table[HASH_SIZE];
} HashMap;
初始化哈希表
// 哈希函数
unsigned int hash(const char* str) {unsigned int hash = 5381;int c;while ((c = *str++)) {hash = ((hash << 5) + hash) + c; // hash * 33 + c}return hash % HASH_SIZE;
}
// 初始化哈希表
HashMap* init_fingerprint_map() {HashMap* map = (HashMap*)malloc(sizeof(HashMap));memset(map->table, 0, sizeof(HashNode*) * HASH_SIZE);// 需要过滤的指纹列表const char* fingerprints[] = {"En", "nTf.n", "kno:n", "n)on", "fknn","kn", "n&n", "nn", "n&nn", "Ton",};// 插入所有指纹for (int i = 0; i < sizeof(fingerprints)/sizeof(char*); i++) {unsigned int index = hash(fingerprints[i]);HashNode* node = (HashNode*)malloc(sizeof(HashNode));node->key = strdup(fingerprints[i]);node->next = map->table[index];map->table[index] = node;}return map;
}
关键实现,哈希查找
// 查找函数 - O(1) 平均时间复杂度
bool is_fingerprint(HashMap* map, const char* fingerprint) {unsigned int index = hash(fingerprint);HashNode* current = map->table[index];// 在链表中查找while (current != NULL) {if (strcmp(current->key, fingerprint) == 0) {return false; // 找到匹配项,返回false}current = current->next;}return true; // 未找到匹配项
}
记得要释放内存
// 释放哈希表内存
void free_hashmap(HashMap* map) {for (int i = 0; i < HASH_SIZE; i++) {HashNode* current = map->table[i];while (current != NULL) {HashNode* temp = current;current = current->next;free(temp->key);free(temp);}}free(map);
}
完整代码
#include <stdbool.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>#define HASH_SIZE 1024 // 哈希表大小,应该是质数以减少冲突typedef struct HashNode {char* key;struct HashNode* next; // 处理冲突用的链表
} HashNode;typedef struct {HashNode* table[HASH_SIZE];
} HashMap;// 哈希函数
unsigned int hash(const char* str) {unsigned int hash = 5381;int c;while ((c = *str++)) {hash = ((hash << 5) + hash) + c; // hash * 33 + c}return hash % HASH_SIZE;
}// 初始化哈希表
HashMap* init_fingerprint_map() {HashMap* map = (HashMap*)malloc(sizeof(HashMap));memset(map->table, 0, sizeof(HashNode*) * HASH_SIZE);// 需要过滤的指纹列表const char* fingerprints[] = {"En", "nTf.n", "kno:n", "n)on", "fknn","kn", "n&n", "nn", "n&nn", "Ton",};// 插入所有指纹for (int i = 0; i < sizeof(fingerprints)/sizeof(char*); i++) {unsigned int index = hash(fingerprints[i]);HashNode* node = (HashNode*)malloc(sizeof(HashNode));node->key = strdup(fingerprints[i]);node->next = map->table[index];map->table[index] = node;}return map;
}// 查找函数 - O(1) 平均时间复杂度
bool is_fingerprint(HashMap* map, const char* fingerprint) {unsigned int index = hash(fingerprint);HashNode* current = map->table[index];// 在链表中查找while (current != NULL) {if (strcmp(current->key, fingerprint) == 0) {return false; // 找到匹配项,返回false}current = current->next;}return true; // 未找到匹配项
}// 释放哈希表内存
void free_hashmap(HashMap* map) {for (int i = 0; i < HASH_SIZE; i++) {HashNode* current = map->table[i];while (current != NULL) {HashNode* temp = current;current = current->next;free(temp->key);free(temp);}}free(map);
}
int main() {// 初始化(只需要一次)HashMap* map = init_fingerprint_map();// 快速查找并打印结果bool result1 = is_fingerprint(map, "En");printf("Test 'En': %s\n", result1 ? "true" : "false");bool result2 = is_fingerprint(map, "kn");printf("Test 'kn': %s\n", result2 ? "true" : "false");bool result3 = is_fingerprint(map, "other");printf("Test 'other': %s\n", result3 ? "true" : "false");// 清理资源free_hashmap(map);return 0;
}
Ⅲ 深度解析哈希表为啥能O(1)
1. 先了解下什么是哈希表?
想象你有一个带编号的储物柜(这就是哈希表):
- 哈希函数就像一个规则,告诉你把东西放在哪个柜子里
- 比如:把字符串 “hello” 放到 3 号柜子
回到一开始说的"为什么说查找是 O(1)"!
当你要找 “hello” 时:
- 用哈希函数算出位置:3
- 我们直接去 3 号柜子找
这样子,是不是就不需要查看其他柜子了,直接O(1),起飞芜湖~~
2. 哈希冲突到底是什么
了解了什么是哈希表,那开始熟悉下哈希冲突
假设现在:
- “hello” -> 3号柜子
- “world” -> 也是3号柜子
处理冲突的方式:储物柜用链子连接
好了,了解了基本逻辑,基本可以上C代码
// 假设我们有一个小型哈希表,存储常见编程语言
#define HASH_SIZE 8 // 8个储物柜// 存储数据
hash("Python") -> 3
hash("Java") -> 3 // 冲突!
hash("Go") -> 5储物柜:
0 1 2 3 4 5 6 7
[ ] [ ] [ ] [Python]-> [Java] [Go] [ ] [ ]// 查找"Java"的过程
1. hash("Java") = 3 // 计算位置
2. 检查3号柜子的 Python // 不是
3. 检查下一个 Java // 找到了!
3.哈希表为什么快
- 想象一个真实的哈希表
#define HASH_SIZE 1024 // 1024个储物柜// 如果存100个数据
// 平均每个柜子只会有 100/1024 ≈ 0.1 个数据
// 也就是说,大多数柜子是空的!
联想实际场景:图书馆找书
- 不需要从第一本找到最后一本
- 直接根据编号去对应书架
- 即使这个位置有几本书,也只需要看很少几本
这样子,就是不是很清晰了,其实哈希表,就是拿着key,拿到索引,然后去对应柜子找东西
按照这个思路,来解读下刚刚写的哈希查找代码
bool is_fingerprint(HashMap* map, const char* fingerprint) {// 1. 计算应该去哪个储物柜unsigned int index = hash(fingerprint);// 2. 去到那个储物柜HashNode* current = map->table[index];// 3. 如果这个储物柜有多个物品,挨个检查while (current != NULL) {// 4. 检查是不是要找的东西if (strcmp(current->key, fingerprint) == 0) {return false; // 找到了!}current = current->next; // 看下一个}return true; // 没找到
}
值得注意的是:这里的循环是很少执行,因为柜子的东西不会太多,甚至有些规则还是空的
- 哈希表很大(比如1024个位置)
- 数据相对较少(比如100个)
- 哈希函数会尽量均匀分布
- 所以每个位置平均不到1个数据
所以虽然代码里有 while 循环,但实际上:
- 直接定位到具体位置(像图书馆找书架)
- 即使需要循环,也只需要看很少的几个
所以说哈希表,这就是为什么说它是 O(1) 的原因了,如果东西太多了,柜子设置太多了,就可以要用另一种方式了,那就是字典树
再次感谢各位大哥大姐们捧场,阅读到此,本篇结束,如有其他疑问,评论区相见~~
相关文章:

从O(k*n)到O(1):如何用哈希表终结多层if判断的性能困局
【前言】 本文将以哈希表重构实战为核心,完整展示如何将传统条件匹配逻辑(上千层if-else判断)转化为O(1)的哈希表高效实现。通过指纹验证场景的代码级解剖,您将深入理解: 1.哈希函数设计如何规避冲突陷阱 2.链式寻址法的工程实现…...

视频采集卡接口
采集卡的正面有MIC IN、LINE IN以及AUDIO OUT三个接口, MIC IN为麦克风输入,我们如果要给采集到的视频实时配音或者是在直播的时候进行讲解,就可以在这里插入一个麦克风, LINE IN为音频线路输入,可以外接播放背景音乐…...

蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/ 个人评价:难度 3 星(满星:5) 前置知识:深度优先搜索 整体思路 深搜,在搜索过程中进行剪枝,剪枝有以下限制条件…...

vue基础(三)
常用指令 1. v-bind 固定绑定与动态绑定: 语法: 标准语法:v-bind:属性"动态数据" 简写语法::属性"动态数拓" <!DOCTYPE html> <html lang"en"><head><me…...

使用Python开发PPTX压缩工具
引言 在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,不便于传输和存储。为了应对这一问题,我们可以使用Python的wxPython图形界面库结合python-pptx和Pillow,开发一个简单的PPTX压缩工具。本文将详细介绍如何实现这一…...

ubuntu24.04安装布置ros
最近换电脑布置机器人环境,下了24.04,但是网上的都不太合适,于是自己试着布置好了,留作有需要的人一起看看。 文章目录 目录 前言 一、确认 ROS 发行版名称 二、检查你的 Ubuntu 版本 三、安装正确的 ROS 发行版 四、对于Ubuntu24…...

SQL 秒变 ER 图 sql转er图
🚀SQL 秒变 ER 图,校园小助手神了! 学数据库的宝子们集合🙋♀️ 是不是每次碰到 SQL 转 ER 图就头皮发麻?看着密密麻麻的代码,脑子直接死机,好不容易理清一点头绪,又被复杂的表关…...

【AI知识点】如何判断数据集是否噪声过大?
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】 判断数据集是否 噪声过大 是数据分析和机器学习建模过程中至关重要的一步。噪声数据会导致模型难以学习数据的真实模式,从而影响预测效果。以下是一些常见的方法来判断数据…...

网络安全治理架构图 网络安全管理架构
网站安全攻防战 XSS攻击 防御手段: - 消毒。 因为恶意脚本中有一些特殊字符,可以通过转义的方式来进行防范 - HttpOnly 对cookie添加httpOnly属性则脚本不能修改cookie。就能防止恶意脚本篡改cookie 注入攻击 SQL注入攻击需要攻击者对数据库结构有所…...

如何写出优秀的单元测试?
写出优秀的单元测试需要考虑以下几个方面: 1. 测试用例设计 测试用例应该覆盖被测试代码的不同场景和边界情况,以尽可能发现潜在的问题。在设计测试用例时需要关注以下几点: 输入输出数据:要测试的函数或方法可能有多个输入参数…...

数据留痕的方法
在项目中,数据变更时,经常需要记录上次的数据,以便查看对比,专业术语叫做数据留痕。数据变更留痕(即记录数据的变更历史)是一个常见的需求,例如在审计、追踪数据变化或满足合规性要求的场景中。…...

机器学习数学基础:19.线性相关与线性无关
一、线性相关与线性无关的定义 (一)线性相关 想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组 α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ m \vec{\alpha}_1, \vec{\alpha}_2, \cdots, \vec{\alpha}_m α 1,α 2…...

ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成
摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…...

JVM虚拟机以及跨平台原理
相信大家已经了解到Java具有跨平台的特性,即“一次编译,到处运行”,例如在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C很难做到的。 那么,跨平台是怎样实现的呢?这就要谈及…...

【AIGC提示词系统】基于 DeepSeek R1 + ClaudeAI 易经占卜系统
上篇因为是VIP,这篇来一个免费的 提示词在最下方,喜欢的点个关注吧 引言 在人工智能与传统文化交融的今天,如何让AI系统能够传递传统易经文化的智慧,同时保持易经本身的神秘感和权威性,是一个极具挑战性的课题。本文将…...

电路笔记 : opa 运放失调电压失调电流输入偏置电流 + 反向放大器的平衡电阻 R3 = R1 // R2 以减小输出直流噪声
目录 定义影响和解决失调电压输入偏置电流平衡电阻R3推导公式: 失调电流 实际的运算放大器(Op-Amp)存在一些非理想特性,如失调电压(VIO)、失调电流(IIO)和输入偏置电流(I…...

ScrapeGraphAI颠覆传统网络爬虫技术
ScrapeGraphAI颠覆传统网络爬虫技术! 引言 在互联网时代,数据如同油田,丰富而深邃。但如何有效地提取这些数据,仍然是许多开发者面临的艰巨任务。你有没有想过,传统的网络爬虫技术是否已经过时?如今&…...

通过多层混合MTL结构提升股票市场预测的准确性,R²最高为0.98
“Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure” 论文地址:https://arxiv.org/pdf/2501.09760 摘要 本研究引入了一种创新的多层次混合多任务学习架构,致力于提升股市预测的效能。此架构融…...

java将list转成树结构
首先是实体类 public class DwdCusPtlSelectDto {//idprivate String key;//值private String value;//中文名private String title;private List<DwdCusPtlSelectDto> children;private String parentId;public void addChild(DwdCusPtlSelectDto child) {if(this.chil…...

互联网分布式ID解决方案
业界实现方案 1. 基于UUID 2. 基于DB数据库多种模式(自增主键、segment) 3. 基于Redis 4. 基于ZK、ETCD 5. 基于SnowFlake 6. 美团Leaf(DB-Segment、zkSnowFlake) 7. 百度uid-generator() 基于UUID生成唯一ID UUID生成策略 推荐阅读 DDD领域驱动与微服务架构设计设计模…...

xinference 安装(http导致错误解决)
为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...

334递增的三元子序列贪心算法(思路解析+源码)
文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...

【Linux】29.Linux 多线程(3)
文章目录 8.4 生产者消费者模型8.4.1 为何要使用生产者消费者模型8.4.2 生产者消费者模型优点 8.5 基于BlockingQueue的生产者消费者模型8.5.1 C queue模拟阻塞队列的生产消费模型 8.6. 为什么pthread_cond_wait 需要互斥量?8.7 条件变量使用规范8.8 条件变量的封装8.9 POSIX信…...

利用UNIAPP实现短视频上下滑动播放功能
在 UniApp 中实现一个短视频上下滑动播放的功能,可以使用 swiper 组件来实现滑动效果,并结合 video 组件来播放短视频。以下是一个完整的示例,展示如何在 UniApp 中实现这一功能。 1. 创建 UniApp 项目 如果你还没有创建 UniApp 项目,可以使用 HBuilderX 创建一个新的项目…...

vscode+CMake+Debug实现 及权限不足等诸多问题汇总
环境说明 有空再补充 直接贴两个json tasks.json {"version": "2.0.0","tasks": [{"label": "cmake","type": "shell","command": "cmake","args": ["../"…...

【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧
在与大语言模型(Large Language Model, LLM)进行交互时,提示词的设计和参数设置直接影响生成内容的质量和效果。无论是通过 API 调用还是直接使用模型,掌握模型的参数配置方法都至关重要。本文将为您详细解析常见的参数设置及其应用场景,帮助您更高效地利用大语言模型。 …...

基于 .NET 8.0 gRPC通讯架构设计讲解,客户端+服务端
目录 1.简要说明 2.服务端设计 2.1 服务端创建 2.2 服务端设计 2.3 服务端业务模块 3.客户端设计-控制台 4.客户端设计-Avalonia桌面程序 5.客户端设计-MAUI安卓端程序 1.简要说明 gRPC 一开始由 google 开发,是一款语言中立、平台中立、开源的远程过程调用…...

6.Centos7上部署flask+SQLAlchemy+python+达梦数据库
情况说明 前面已经介绍了window上使用pycharm工具开发项目时,window版的python连接达梦数据库需要的第三方包。 这篇文章讲述,centos7上的python版本连接达梦数据库需要的第三方包。 之前是在windows上安装达梦数据库的客户端,将驱动包安装到windows版本的python中。(开…...

【C语言系列】深入理解指针(5)
深入理解指针(5) 一、sizeof和strlen的对比1.1sizeof1.2strlen1.3sizeof和strlen的对比 二、数组和指针笔试题解析2.1 一维数组2.2 字符数组2.2.1代码1:2.2.2代码2:2.2.3代码3:2.2.4代码4:2.2.5代码5&#…...

mysql自连接 处理层次结构数据
MySQL 的自连接(Self Join)是一种特殊的连接方式,它允许一个表与自身进行连接。自连接通常用于处理具有层次结构或递归关系的数据,或者当同一张表中的数据需要相互关联时。以下是几种常见的场景,说明何时应该使用自连接…...