蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/
个人评价:难度 3 星(满星:5)
前置知识:深度优先搜索
整体思路
深搜,在搜索过程中进行剪枝,剪枝有以下限制条件:
- 所有已填入的 1 对周围 9 个方格数字的影响,不能超过原来棋盘上的数字;
- 当确定了 ( x , y ) (x, y) (x,y) 位置的像素颜色时, ( x − 1 , y − 1 ) (x-1, y-1) (x−1,y−1) 位置的数字也确定下来了,这个由填入像素颜色确定的数字必须与棋盘上的数字相同,由此可以确定所有 x ∈ [ 1 , n ) , y ∈ [ 1 , m ) x \in [1, n),~y \in [1, m) x∈[1,n), y∈[1,m) 位置的数字;
- 当确定了第 m m m 列方格的像素颜色时,第 x − 1 x - 1 x−1 行的数字也随之确定,这个数字也必须与棋盘上的数字相同,由此可以确定所有 x ∈ [ 1 , n ) , y = m x \in [1,n),~y = m x∈[1,n), y=m 位置的数字;
- 当确定了第 n n n 行方格的像素颜色时,第 y − 1 y - 1 y−1 列的数字也随之确定,同上可确定所有 x = n , y ∈ [ 1 , m ) x = n, ~ y \in [1, m) x=n, y∈[1,m) 位置的数字;
- 最后一个位置 ( n , m ) (n, m) (n,m) 的像素颜色确定时,最后一个数字也随之确定,这个数字也必须与棋盘上的数字相同。
过题代码
#include <bits/stdc++.h>
using namespace std;typedef long long LL;
const int maxn = 100;
int n, m, nm;
bool flag;
int num[maxn][maxn], sum[maxn][maxn];
char str[maxn][maxn], ans[maxn][maxn];
const int dir[9][2] = {{-1, -1}, {-1, 0}, {-1, 1},{0, -1}, {0, 0}, {0, 1},{1, -1}, {1, 0}, {1, 1}
};bool in(int x, int y) {return x >= 0 && x < n && y >= 0 && y < m;
}bool check(int x, int y, int d) {for (int i = 0; i < 9; ++i) {int xx = x + dir[i][0];int yy = y + dir[i][1];if (in(xx, yy) && sum[xx][yy] + d > num[xx][yy]) {return false;}}if (in(x - 1, y - 1) && num[x - 1][y - 1] != 10 && sum[x - 1][y - 1] + d != num[x - 1][y - 1]) {return false;}if (y == m - 1 && in(x - 1, y) && num[x - 1][y] != 10 && sum[x - 1][y] + d != num[x - 1][y]) {return false;}if (x == n - 1 && in(x, y - 1) && num[x][y - 1] != 10 && sum[x][y - 1] + d != num[x][y - 1]) {return false;}if (x == n - 1 && y == m - 1 && num[x][y] != 10 && sum[x][y] + d != num[x][y]) {return false;}return true;
}void add(int x, int y, int d) {for (int i = 0; i < 9; ++i) {int xx = x + dir[i][0];int yy = y + dir[i][1];if (in(xx, yy)) {sum[xx][yy] += d;}}
}void dfs(int depth) {if (depth == nm) {flag = true;for (int i = 0; i < n; ++i) {cout << ans[i] << endl;}return ;}int x = depth / m;int y = depth % m;if (check(x, y, 1)) {add(x, y, 1);ans[x][y] = '1';dfs(depth + 1);if (flag) {return ;}add(x, y, -1);ans[x][y] = '0';}if (check(x, y, 0)) {dfs(depth + 1);}
}int main() {
#ifdef ExRocfreopen("test.txt", "r", stdin);
#endif // ExRocios::sync_with_stdio(false);cin >> n >> m;nm = n * m;for (int i = 0; i < n; ++i) {cin >> str[i];for (int j = 0; j < m; ++j) {if (str[i][j] == '_') {num[i][j] = 10;} else {num[i][j] = str[i][j] - '0';}ans[i][j] = '0';}}dfs(0);return 0;
}
相关文章:
蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/ 个人评价:难度 3 星(满星:5) 前置知识:深度优先搜索 整体思路 深搜,在搜索过程中进行剪枝,剪枝有以下限制条件…...
vue基础(三)
常用指令 1. v-bind 固定绑定与动态绑定: 语法: 标准语法:v-bind:属性"动态数据" 简写语法::属性"动态数拓" <!DOCTYPE html> <html lang"en"><head><me…...
使用Python开发PPTX压缩工具
引言 在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,不便于传输和存储。为了应对这一问题,我们可以使用Python的wxPython图形界面库结合python-pptx和Pillow,开发一个简单的PPTX压缩工具。本文将详细介绍如何实现这一…...
ubuntu24.04安装布置ros
最近换电脑布置机器人环境,下了24.04,但是网上的都不太合适,于是自己试着布置好了,留作有需要的人一起看看。 文章目录 目录 前言 一、确认 ROS 发行版名称 二、检查你的 Ubuntu 版本 三、安装正确的 ROS 发行版 四、对于Ubuntu24…...
SQL 秒变 ER 图 sql转er图
🚀SQL 秒变 ER 图,校园小助手神了! 学数据库的宝子们集合🙋♀️ 是不是每次碰到 SQL 转 ER 图就头皮发麻?看着密密麻麻的代码,脑子直接死机,好不容易理清一点头绪,又被复杂的表关…...
【AI知识点】如何判断数据集是否噪声过大?
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】 判断数据集是否 噪声过大 是数据分析和机器学习建模过程中至关重要的一步。噪声数据会导致模型难以学习数据的真实模式,从而影响预测效果。以下是一些常见的方法来判断数据…...
网络安全治理架构图 网络安全管理架构
网站安全攻防战 XSS攻击 防御手段: - 消毒。 因为恶意脚本中有一些特殊字符,可以通过转义的方式来进行防范 - HttpOnly 对cookie添加httpOnly属性则脚本不能修改cookie。就能防止恶意脚本篡改cookie 注入攻击 SQL注入攻击需要攻击者对数据库结构有所…...
如何写出优秀的单元测试?
写出优秀的单元测试需要考虑以下几个方面: 1. 测试用例设计 测试用例应该覆盖被测试代码的不同场景和边界情况,以尽可能发现潜在的问题。在设计测试用例时需要关注以下几点: 输入输出数据:要测试的函数或方法可能有多个输入参数…...
数据留痕的方法
在项目中,数据变更时,经常需要记录上次的数据,以便查看对比,专业术语叫做数据留痕。数据变更留痕(即记录数据的变更历史)是一个常见的需求,例如在审计、追踪数据变化或满足合规性要求的场景中。…...
机器学习数学基础:19.线性相关与线性无关
一、线性相关与线性无关的定义 (一)线性相关 想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组 α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ m \vec{\alpha}_1, \vec{\alpha}_2, \cdots, \vec{\alpha}_m α 1,α 2…...
ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成
摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…...
JVM虚拟机以及跨平台原理
相信大家已经了解到Java具有跨平台的特性,即“一次编译,到处运行”,例如在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C很难做到的。 那么,跨平台是怎样实现的呢?这就要谈及…...
【AIGC提示词系统】基于 DeepSeek R1 + ClaudeAI 易经占卜系统
上篇因为是VIP,这篇来一个免费的 提示词在最下方,喜欢的点个关注吧 引言 在人工智能与传统文化交融的今天,如何让AI系统能够传递传统易经文化的智慧,同时保持易经本身的神秘感和权威性,是一个极具挑战性的课题。本文将…...
电路笔记 : opa 运放失调电压失调电流输入偏置电流 + 反向放大器的平衡电阻 R3 = R1 // R2 以减小输出直流噪声
目录 定义影响和解决失调电压输入偏置电流平衡电阻R3推导公式: 失调电流 实际的运算放大器(Op-Amp)存在一些非理想特性,如失调电压(VIO)、失调电流(IIO)和输入偏置电流(I…...
ScrapeGraphAI颠覆传统网络爬虫技术
ScrapeGraphAI颠覆传统网络爬虫技术! 引言 在互联网时代,数据如同油田,丰富而深邃。但如何有效地提取这些数据,仍然是许多开发者面临的艰巨任务。你有没有想过,传统的网络爬虫技术是否已经过时?如今&…...
通过多层混合MTL结构提升股票市场预测的准确性,R²最高为0.98
“Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure” 论文地址:https://arxiv.org/pdf/2501.09760 摘要 本研究引入了一种创新的多层次混合多任务学习架构,致力于提升股市预测的效能。此架构融…...
java将list转成树结构
首先是实体类 public class DwdCusPtlSelectDto {//idprivate String key;//值private String value;//中文名private String title;private List<DwdCusPtlSelectDto> children;private String parentId;public void addChild(DwdCusPtlSelectDto child) {if(this.chil…...
互联网分布式ID解决方案
业界实现方案 1. 基于UUID 2. 基于DB数据库多种模式(自增主键、segment) 3. 基于Redis 4. 基于ZK、ETCD 5. 基于SnowFlake 6. 美团Leaf(DB-Segment、zkSnowFlake) 7. 百度uid-generator() 基于UUID生成唯一ID UUID生成策略 推荐阅读 DDD领域驱动与微服务架构设计设计模…...
xinference 安装(http导致错误解决)
为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...
334递增的三元子序列贪心算法(思路解析+源码)
文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
