蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/
个人评价:难度 3 星(满星:5)
前置知识:深度优先搜索
整体思路
深搜,在搜索过程中进行剪枝,剪枝有以下限制条件:
- 所有已填入的 1 对周围 9 个方格数字的影响,不能超过原来棋盘上的数字;
- 当确定了 ( x , y ) (x, y) (x,y) 位置的像素颜色时, ( x − 1 , y − 1 ) (x-1, y-1) (x−1,y−1) 位置的数字也确定下来了,这个由填入像素颜色确定的数字必须与棋盘上的数字相同,由此可以确定所有 x ∈ [ 1 , n ) , y ∈ [ 1 , m ) x \in [1, n),~y \in [1, m) x∈[1,n), y∈[1,m) 位置的数字;
- 当确定了第 m m m 列方格的像素颜色时,第 x − 1 x - 1 x−1 行的数字也随之确定,这个数字也必须与棋盘上的数字相同,由此可以确定所有 x ∈ [ 1 , n ) , y = m x \in [1,n),~y = m x∈[1,n), y=m 位置的数字;
- 当确定了第 n n n 行方格的像素颜色时,第 y − 1 y - 1 y−1 列的数字也随之确定,同上可确定所有 x = n , y ∈ [ 1 , m ) x = n, ~ y \in [1, m) x=n, y∈[1,m) 位置的数字;
- 最后一个位置 ( n , m ) (n, m) (n,m) 的像素颜色确定时,最后一个数字也随之确定,这个数字也必须与棋盘上的数字相同。
过题代码
#include <bits/stdc++.h>
using namespace std;typedef long long LL;
const int maxn = 100;
int n, m, nm;
bool flag;
int num[maxn][maxn], sum[maxn][maxn];
char str[maxn][maxn], ans[maxn][maxn];
const int dir[9][2] = {{-1, -1}, {-1, 0}, {-1, 1},{0, -1}, {0, 0}, {0, 1},{1, -1}, {1, 0}, {1, 1}
};bool in(int x, int y) {return x >= 0 && x < n && y >= 0 && y < m;
}bool check(int x, int y, int d) {for (int i = 0; i < 9; ++i) {int xx = x + dir[i][0];int yy = y + dir[i][1];if (in(xx, yy) && sum[xx][yy] + d > num[xx][yy]) {return false;}}if (in(x - 1, y - 1) && num[x - 1][y - 1] != 10 && sum[x - 1][y - 1] + d != num[x - 1][y - 1]) {return false;}if (y == m - 1 && in(x - 1, y) && num[x - 1][y] != 10 && sum[x - 1][y] + d != num[x - 1][y]) {return false;}if (x == n - 1 && in(x, y - 1) && num[x][y - 1] != 10 && sum[x][y - 1] + d != num[x][y - 1]) {return false;}if (x == n - 1 && y == m - 1 && num[x][y] != 10 && sum[x][y] + d != num[x][y]) {return false;}return true;
}void add(int x, int y, int d) {for (int i = 0; i < 9; ++i) {int xx = x + dir[i][0];int yy = y + dir[i][1];if (in(xx, yy)) {sum[xx][yy] += d;}}
}void dfs(int depth) {if (depth == nm) {flag = true;for (int i = 0; i < n; ++i) {cout << ans[i] << endl;}return ;}int x = depth / m;int y = depth % m;if (check(x, y, 1)) {add(x, y, 1);ans[x][y] = '1';dfs(depth + 1);if (flag) {return ;}add(x, y, -1);ans[x][y] = '0';}if (check(x, y, 0)) {dfs(depth + 1);}
}int main() {
#ifdef ExRocfreopen("test.txt", "r", stdin);
#endif // ExRocios::sync_with_stdio(false);cin >> n >> m;nm = n * m;for (int i = 0; i < n; ++i) {cin >> str[i];for (int j = 0; j < m; ++j) {if (str[i][j] == '_') {num[i][j] = 10;} else {num[i][j] = str[i][j] - '0';}ans[i][j] = '0';}}dfs(0);return 0;
}
相关文章:
蓝桥杯真题 - 像素放置 - 题解
题目链接:https://www.lanqiao.cn/problems/3508/learning/ 个人评价:难度 3 星(满星:5) 前置知识:深度优先搜索 整体思路 深搜,在搜索过程中进行剪枝,剪枝有以下限制条件…...
vue基础(三)
常用指令 1. v-bind 固定绑定与动态绑定: 语法: 标准语法:v-bind:属性"动态数据" 简写语法::属性"动态数拓" <!DOCTYPE html> <html lang"en"><head><me…...

使用Python开发PPTX压缩工具
引言 在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,不便于传输和存储。为了应对这一问题,我们可以使用Python的wxPython图形界面库结合python-pptx和Pillow,开发一个简单的PPTX压缩工具。本文将详细介绍如何实现这一…...

ubuntu24.04安装布置ros
最近换电脑布置机器人环境,下了24.04,但是网上的都不太合适,于是自己试着布置好了,留作有需要的人一起看看。 文章目录 目录 前言 一、确认 ROS 发行版名称 二、检查你的 Ubuntu 版本 三、安装正确的 ROS 发行版 四、对于Ubuntu24…...

SQL 秒变 ER 图 sql转er图
🚀SQL 秒变 ER 图,校园小助手神了! 学数据库的宝子们集合🙋♀️ 是不是每次碰到 SQL 转 ER 图就头皮发麻?看着密密麻麻的代码,脑子直接死机,好不容易理清一点头绪,又被复杂的表关…...
【AI知识点】如何判断数据集是否噪声过大?
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】【AI应用】 判断数据集是否 噪声过大 是数据分析和机器学习建模过程中至关重要的一步。噪声数据会导致模型难以学习数据的真实模式,从而影响预测效果。以下是一些常见的方法来判断数据…...

网络安全治理架构图 网络安全管理架构
网站安全攻防战 XSS攻击 防御手段: - 消毒。 因为恶意脚本中有一些特殊字符,可以通过转义的方式来进行防范 - HttpOnly 对cookie添加httpOnly属性则脚本不能修改cookie。就能防止恶意脚本篡改cookie 注入攻击 SQL注入攻击需要攻击者对数据库结构有所…...
如何写出优秀的单元测试?
写出优秀的单元测试需要考虑以下几个方面: 1. 测试用例设计 测试用例应该覆盖被测试代码的不同场景和边界情况,以尽可能发现潜在的问题。在设计测试用例时需要关注以下几点: 输入输出数据:要测试的函数或方法可能有多个输入参数…...
数据留痕的方法
在项目中,数据变更时,经常需要记录上次的数据,以便查看对比,专业术语叫做数据留痕。数据变更留痕(即记录数据的变更历史)是一个常见的需求,例如在审计、追踪数据变化或满足合规性要求的场景中。…...
机器学习数学基础:19.线性相关与线性无关
一、线性相关与线性无关的定义 (一)线性相关 想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组 α ⃗ 1 , α ⃗ 2 , ⋯ , α ⃗ m \vec{\alpha}_1, \vec{\alpha}_2, \cdots, \vec{\alpha}_m α 1,α 2…...

ArgoCD实战指南:GitOps驱动下的Kubernetes自动化部署与Helm/Kustomize集成
摘要 ArgoCD 是一种 GitOps 持续交付工具,专为 Kubernetes 设计。它能够自动同步 Git 仓库中的声明性配置,并将其应用到 Kubernetes 集群中。本文将介绍 ArgoCD 的架构、安装步骤,以及如何结合 Helm 和 Kustomize 进行 Kubernetes 自动化部署。 引言 为什么选择 ArgoCD?…...

JVM虚拟机以及跨平台原理
相信大家已经了解到Java具有跨平台的特性,即“一次编译,到处运行”,例如在Windows下编写的程序,无需任何修改就可以在Linux下运行,这是C和C很难做到的。 那么,跨平台是怎样实现的呢?这就要谈及…...

【AIGC提示词系统】基于 DeepSeek R1 + ClaudeAI 易经占卜系统
上篇因为是VIP,这篇来一个免费的 提示词在最下方,喜欢的点个关注吧 引言 在人工智能与传统文化交融的今天,如何让AI系统能够传递传统易经文化的智慧,同时保持易经本身的神秘感和权威性,是一个极具挑战性的课题。本文将…...
电路笔记 : opa 运放失调电压失调电流输入偏置电流 + 反向放大器的平衡电阻 R3 = R1 // R2 以减小输出直流噪声
目录 定义影响和解决失调电压输入偏置电流平衡电阻R3推导公式: 失调电流 实际的运算放大器(Op-Amp)存在一些非理想特性,如失调电压(VIO)、失调电流(IIO)和输入偏置电流(I…...
ScrapeGraphAI颠覆传统网络爬虫技术
ScrapeGraphAI颠覆传统网络爬虫技术! 引言 在互联网时代,数据如同油田,丰富而深邃。但如何有效地提取这些数据,仍然是许多开发者面临的艰巨任务。你有没有想过,传统的网络爬虫技术是否已经过时?如今&…...

通过多层混合MTL结构提升股票市场预测的准确性,R²最高为0.98
“Boosting the Accuracy of Stock Market Prediction via Multi-Layer Hybrid MTL Structure” 论文地址:https://arxiv.org/pdf/2501.09760 摘要 本研究引入了一种创新的多层次混合多任务学习架构,致力于提升股市预测的效能。此架构融…...
java将list转成树结构
首先是实体类 public class DwdCusPtlSelectDto {//idprivate String key;//值private String value;//中文名private String title;private List<DwdCusPtlSelectDto> children;private String parentId;public void addChild(DwdCusPtlSelectDto child) {if(this.chil…...

互联网分布式ID解决方案
业界实现方案 1. 基于UUID 2. 基于DB数据库多种模式(自增主键、segment) 3. 基于Redis 4. 基于ZK、ETCD 5. 基于SnowFlake 6. 美团Leaf(DB-Segment、zkSnowFlake) 7. 百度uid-generator() 基于UUID生成唯一ID UUID生成策略 推荐阅读 DDD领域驱动与微服务架构设计设计模…...

xinference 安装(http导致错误解决)
为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...

334递增的三元子序列贪心算法(思路解析+源码)
文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...