当前位置: 首页 > news >正文

xinference 安装(http导致错误解决)

为什么要使用xinference

安装xinference

环境

1)conda create -n Xinference python=3.11

注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本

错误: error while attempting to bind on address,no dictory等错误,是由于ssl启动错误引起的。 建议直接安装xinference all版本

注意:单部署

启动:xinference-local --host 127.0.0.1 --port 9997

分类启动

前端:xinference-local --host 127.0.0.1 --port 9997

后端:nohup xinference-local --host 127.0.0.1 --port 9997 & > output.log

涉及版本有

# CUDA/CPU 

pip install "xinference[transformers]" 

pip install "xinference[vllm]" 

pip install "xinference[sglang]" 

# Metal(MPS) 

pip install "xinference[mlx]" 

CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

普通启动:xinference-local --host 0.0.0.0 --port 9997

模型启动:

# CUDA/CPU XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port 9997

# Metal(MPS)

XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope PYTORCH_ENABLE_MPS_FALLBACK=1 xinference-local --host 0.0.0.0 --port 9997

Xinference支持集群部署

主服务器启动 Supervisor

部署启动: xinference-supervisor -H 192.168.31.100 --port 9997

其他服务器启动 Worker

# 格式 xinference-worker -e "http://${主服务器IP}:9997" -H 当前服务器IP(子服务器IP) # 示例 xinference-worker -e "http://192.168.31.100:9997" -H 192.168.31.101

访问doc地址:http://localhost:9997/docs

(1)注册模型

xinference register --model-type LLM --file custom-glm4-chat.json --persist

(2)启动模型      

xinference launch --model-name custom-glm4-chat --model-format pytorch --model-engine Transformers

Langchain-chatchat

错误1

"C:\Users\Administrator\Desktop\Langchain-Chatchat-master\libs\chatchat-server\chatchat\webui_pages\kb_chat.py", line 118, in kb_chat kb_list = [x["kb_name"] for x in api.list_knowledge_bases()

{ "input": "The food was delicious and the waiter...", "model": "360Zhinao-search", "encoding_format": "float" }

注意注意:

请用pip list查看自己httpx版本,我发现最新httpx==0.28.0是不行的,需要0.27.2版本才可以,重新安装后就不会报错了

导致错误是

langchain-chatchat报错Client.__init__() got an unexpected keyword argument ‘proxies‘

错误2

RuntimeError: Cluster is not available after multiple attempts

主要由于启动ip地址host错误,突出表现为0.0.0.0地址,应该本地化使用127.0.0.1

相关文章:

xinference 安装(http导致错误解决)

为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...

334递增的三元子序列贪心算法(思路解析+源码)

文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...

【Linux】29.Linux 多线程(3)

文章目录 8.4 生产者消费者模型8.4.1 为何要使用生产者消费者模型8.4.2 生产者消费者模型优点 8.5 基于BlockingQueue的生产者消费者模型8.5.1 C queue模拟阻塞队列的生产消费模型 8.6. 为什么pthread_cond_wait 需要互斥量?8.7 条件变量使用规范8.8 条件变量的封装8.9 POSIX信…...

利用UNIAPP实现短视频上下滑动播放功能

在 UniApp 中实现一个短视频上下滑动播放的功能,可以使用 swiper 组件来实现滑动效果,并结合 video 组件来播放短视频。以下是一个完整的示例,展示如何在 UniApp 中实现这一功能。 1. 创建 UniApp 项目 如果你还没有创建 UniApp 项目,可以使用 HBuilderX 创建一个新的项目…...

vscode+CMake+Debug实现 及权限不足等诸多问题汇总

环境说明 有空再补充 直接贴两个json tasks.json {"version": "2.0.0","tasks": [{"label": "cmake","type": "shell","command": "cmake","args": ["../"…...

【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧

在与大语言模型(Large Language Model, LLM)进行交互时,提示词的设计和参数设置直接影响生成内容的质量和效果。无论是通过 API 调用还是直接使用模型,掌握模型的参数配置方法都至关重要。本文将为您详细解析常见的参数设置及其应用场景,帮助您更高效地利用大语言模型。 …...

基于 .NET 8.0 gRPC通讯架构设计讲解,客户端+服务端

目录 1.简要说明 2.服务端设计 2.1 服务端创建 2.2 服务端设计 2.3 服务端业务模块 3.客户端设计-控制台 4.客户端设计-Avalonia桌面程序 5.客户端设计-MAUI安卓端程序 1.简要说明 gRPC 一开始由 google 开发,是一款语言中立、平台中立、开源的远程过程调用…...

6.Centos7上部署flask+SQLAlchemy+python+达梦数据库

情况说明 前面已经介绍了window上使用pycharm工具开发项目时,window版的python连接达梦数据库需要的第三方包。 这篇文章讲述,centos7上的python版本连接达梦数据库需要的第三方包。 之前是在windows上安装达梦数据库的客户端,将驱动包安装到windows版本的python中。(开…...

【C语言系列】深入理解指针(5)

深入理解指针(5) 一、sizeof和strlen的对比1.1sizeof1.2strlen1.3sizeof和strlen的对比 二、数组和指针笔试题解析2.1 一维数组2.2 字符数组2.2.1代码1:2.2.2代码2:2.2.3代码3:2.2.4代码4:2.2.5代码5&#…...

mysql自连接 处理层次结构数据

MySQL 的自连接(Self Join)是一种特殊的连接方式,它允许一个表与自身进行连接。自连接通常用于处理具有层次结构或递归关系的数据,或者当同一张表中的数据需要相互关联时。以下是几种常见的场景,说明何时应该使用自连接…...

##__VA_ARGS__有什么作用

##__VA_ARGS__ 是 C/C 中宏定义(Macro)的一种特殊用法,主要用于可变参数宏(Variadic Macros)的场景,解决当可变参数为空时可能导致的语法错误问题。以下是详细解释: 核心作用 消除空参数时的多余…...

鸿蒙 router.back()返回不到上个页面

1. 检查页面栈(Page Stack) 鸿蒙的路由基于页面栈管理,确保上一个页面存在且未被销毁。 使用 router.getLength() 检查当前页面栈长度: console.log(当前页面栈长度: ${router.getLength()}); 如果结果为 1,说明没有上…...

深度学习模型蒸馏技术的发展与应用

随着人工智能技术的快速发展,大型语言模型和深度学习模型在各个领域展现出惊人的能力。然而,这些模型的规模和复杂度也带来了显著的部署挑战。模型蒸馏技术作为一种优化解决方案,正在成为连接学术研究和产业应用的重要桥梁。本文将深入探讨模…...

STM32G0B1 ADC DMA normal

目标 ADC 5个通道,希望每1秒采集一遍; CUBEMX 配置 添加代码 #define ADC1_CHANNEL_CNT 5 //采样通道数 #define ADC1_CHANNEL_FRE 3 //单个通道采样次数,用来取平均值 uint16_t adc1_val_buf[ADC1_CHANNEL_CNT*ADC1_CHANNEL_FRE]; //传递…...

<tauri><rust><GUI>基于rust和tauri,在已有的前端框架上手动集成tauri示例

前言 本文是基于rust和tauri,由于tauri是前、后端结合的GUI框架,既可以直接生成包含前端代码的文件,也可以在已有的前端项目上集成tauri框架,将前端页面化为桌面GUI。 环境配置 系统:windows 10 平台:visu…...

模型 冗余系统(系统科学)

系列文章分享模型,了解更多👉 模型_思维模型目录。为防故障、保运行的备份机制。 1 冗余系统的应用 1.1 冗余系统在企业管理中的应用-金融行业信息安全的二倍冗余技术 在金融行业,信息安全是保障业务连续性和客户资产安全的关键。随着数字化…...

Deepseek部署的模型参数要求

DeepSeek 模型部署硬件要求 模型名称参数量显存需求(推理)显存需求(微调)CPU 配置内存要求硬盘空间适用场景DeepSeek-R1-1.5B1.5B4GB8GB最低 4 核(推荐多核)8GB3GB低资源设备部署,如树莓派、旧…...

AI-学习路线图-PyTorch-我是土堆

1 需求 PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili PyTorch 深度学习快速入门教程 配套资源 链接 视频教程 https://www.bilibili.com/video/BV1hE411t7RN/ 文字教程 https://blog.csdn.net/xiaotudui…...

[LeetCode]day17 349.两个数组的交集

https://leetcode.cn/problems/intersection-of-two-arrays/description/ 题目描述 给定两个数组 nums1 和 nums2 ,返回它们的交集。 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序 。 示例 1: 输入:nums1 [1,2,2,1…...

axios 发起 post请求 json 需要传入数据格式

• 1. axios 发起 post请求 json 传入数据格式 • 2. axios get请求 1. axios 发起 post请求 json 传入数据格式 使用 axios 发起 POST 请求并以 JSON 格式传递数据是前端开发中常见的操作。 下面是一个简单的示例,展示如何使用 axios 向服务器发送包含 JSON 数…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...