xinference 安装(http导致错误解决)
为什么要使用xinference

安装xinference
环境
1)conda create -n Xinference python=3.11
注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本
错误: error while attempting to bind on address,no dictory等错误,是由于ssl启动错误引起的。 建议直接安装xinference all版本
注意:单部署
启动:xinference-local --host 127.0.0.1 --port 9997
分类启动
前端:xinference-local --host 127.0.0.1 --port 9997
后端:nohup xinference-local --host 127.0.0.1 --port 9997 & > output.log
涉及版本有
# CUDA/CPU
pip install "xinference[transformers]"
pip install "xinference[vllm]"
pip install "xinference[sglang]"
# Metal(MPS)
pip install "xinference[mlx]"
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
普通启动:xinference-local --host 0.0.0.0 --port 9997
模型启动:
# CUDA/CPU XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port 9997
# Metal(MPS)
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope PYTORCH_ENABLE_MPS_FALLBACK=1 xinference-local --host 0.0.0.0 --port 9997
Xinference支持集群部署
主服务器启动 Supervisor
部署启动: xinference-supervisor -H 192.168.31.100 --port 9997
其他服务器启动 Worker
# 格式 xinference-worker -e "http://${主服务器IP}:9997" -H 当前服务器IP(子服务器IP) # 示例 xinference-worker -e "http://192.168.31.100:9997" -H 192.168.31.101
访问doc地址:http://localhost:9997/docs

(1)注册模型
xinference register --model-type LLM --file custom-glm4-chat.json --persist
(2)启动模型
xinference launch --model-name custom-glm4-chat --model-format pytorch --model-engine Transformers
Langchain-chatchat
错误1
"C:\Users\Administrator\Desktop\Langchain-Chatchat-master\libs\chatchat-server\chatchat\webui_pages\kb_chat.py", line 118, in kb_chat kb_list = [x["kb_name"] for x in api.list_knowledge_bases()
{ "input": "The food was delicious and the waiter...", "model": "360Zhinao-search", "encoding_format": "float" }
注意注意:
请用pip list查看自己httpx版本,我发现最新httpx==0.28.0是不行的,需要0.27.2版本才可以,重新安装后就不会报错了
导致错误是
langchain-chatchat报错Client.__init__() got an unexpected keyword argument ‘proxies‘
错误2
RuntimeError: Cluster is not available after multiple attempts
主要由于启动ip地址host错误,突出表现为0.0.0.0地址,应该本地化使用127.0.0.1
相关文章:
xinference 安装(http导致错误解决)
为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...
334递增的三元子序列贪心算法(思路解析+源码)
文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...
【Linux】29.Linux 多线程(3)
文章目录 8.4 生产者消费者模型8.4.1 为何要使用生产者消费者模型8.4.2 生产者消费者模型优点 8.5 基于BlockingQueue的生产者消费者模型8.5.1 C queue模拟阻塞队列的生产消费模型 8.6. 为什么pthread_cond_wait 需要互斥量?8.7 条件变量使用规范8.8 条件变量的封装8.9 POSIX信…...
利用UNIAPP实现短视频上下滑动播放功能
在 UniApp 中实现一个短视频上下滑动播放的功能,可以使用 swiper 组件来实现滑动效果,并结合 video 组件来播放短视频。以下是一个完整的示例,展示如何在 UniApp 中实现这一功能。 1. 创建 UniApp 项目 如果你还没有创建 UniApp 项目,可以使用 HBuilderX 创建一个新的项目…...
vscode+CMake+Debug实现 及权限不足等诸多问题汇总
环境说明 有空再补充 直接贴两个json tasks.json {"version": "2.0.0","tasks": [{"label": "cmake","type": "shell","command": "cmake","args": ["../"…...
【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧
在与大语言模型(Large Language Model, LLM)进行交互时,提示词的设计和参数设置直接影响生成内容的质量和效果。无论是通过 API 调用还是直接使用模型,掌握模型的参数配置方法都至关重要。本文将为您详细解析常见的参数设置及其应用场景,帮助您更高效地利用大语言模型。 …...
基于 .NET 8.0 gRPC通讯架构设计讲解,客户端+服务端
目录 1.简要说明 2.服务端设计 2.1 服务端创建 2.2 服务端设计 2.3 服务端业务模块 3.客户端设计-控制台 4.客户端设计-Avalonia桌面程序 5.客户端设计-MAUI安卓端程序 1.简要说明 gRPC 一开始由 google 开发,是一款语言中立、平台中立、开源的远程过程调用…...
6.Centos7上部署flask+SQLAlchemy+python+达梦数据库
情况说明 前面已经介绍了window上使用pycharm工具开发项目时,window版的python连接达梦数据库需要的第三方包。 这篇文章讲述,centos7上的python版本连接达梦数据库需要的第三方包。 之前是在windows上安装达梦数据库的客户端,将驱动包安装到windows版本的python中。(开…...
【C语言系列】深入理解指针(5)
深入理解指针(5) 一、sizeof和strlen的对比1.1sizeof1.2strlen1.3sizeof和strlen的对比 二、数组和指针笔试题解析2.1 一维数组2.2 字符数组2.2.1代码1:2.2.2代码2:2.2.3代码3:2.2.4代码4:2.2.5代码5&#…...
mysql自连接 处理层次结构数据
MySQL 的自连接(Self Join)是一种特殊的连接方式,它允许一个表与自身进行连接。自连接通常用于处理具有层次结构或递归关系的数据,或者当同一张表中的数据需要相互关联时。以下是几种常见的场景,说明何时应该使用自连接…...
##__VA_ARGS__有什么作用
##__VA_ARGS__ 是 C/C 中宏定义(Macro)的一种特殊用法,主要用于可变参数宏(Variadic Macros)的场景,解决当可变参数为空时可能导致的语法错误问题。以下是详细解释: 核心作用 消除空参数时的多余…...
鸿蒙 router.back()返回不到上个页面
1. 检查页面栈(Page Stack) 鸿蒙的路由基于页面栈管理,确保上一个页面存在且未被销毁。 使用 router.getLength() 检查当前页面栈长度: console.log(当前页面栈长度: ${router.getLength()}); 如果结果为 1,说明没有上…...
深度学习模型蒸馏技术的发展与应用
随着人工智能技术的快速发展,大型语言模型和深度学习模型在各个领域展现出惊人的能力。然而,这些模型的规模和复杂度也带来了显著的部署挑战。模型蒸馏技术作为一种优化解决方案,正在成为连接学术研究和产业应用的重要桥梁。本文将深入探讨模…...
STM32G0B1 ADC DMA normal
目标 ADC 5个通道,希望每1秒采集一遍; CUBEMX 配置 添加代码 #define ADC1_CHANNEL_CNT 5 //采样通道数 #define ADC1_CHANNEL_FRE 3 //单个通道采样次数,用来取平均值 uint16_t adc1_val_buf[ADC1_CHANNEL_CNT*ADC1_CHANNEL_FRE]; //传递…...
<tauri><rust><GUI>基于rust和tauri,在已有的前端框架上手动集成tauri示例
前言 本文是基于rust和tauri,由于tauri是前、后端结合的GUI框架,既可以直接生成包含前端代码的文件,也可以在已有的前端项目上集成tauri框架,将前端页面化为桌面GUI。 环境配置 系统:windows 10 平台:visu…...
模型 冗余系统(系统科学)
系列文章分享模型,了解更多👉 模型_思维模型目录。为防故障、保运行的备份机制。 1 冗余系统的应用 1.1 冗余系统在企业管理中的应用-金融行业信息安全的二倍冗余技术 在金融行业,信息安全是保障业务连续性和客户资产安全的关键。随着数字化…...
Deepseek部署的模型参数要求
DeepSeek 模型部署硬件要求 模型名称参数量显存需求(推理)显存需求(微调)CPU 配置内存要求硬盘空间适用场景DeepSeek-R1-1.5B1.5B4GB8GB最低 4 核(推荐多核)8GB3GB低资源设备部署,如树莓派、旧…...
AI-学习路线图-PyTorch-我是土堆
1 需求 PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili PyTorch 深度学习快速入门教程 配套资源 链接 视频教程 https://www.bilibili.com/video/BV1hE411t7RN/ 文字教程 https://blog.csdn.net/xiaotudui…...
[LeetCode]day17 349.两个数组的交集
https://leetcode.cn/problems/intersection-of-two-arrays/description/ 题目描述 给定两个数组 nums1 和 nums2 ,返回它们的交集。 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序 。 示例 1: 输入:nums1 [1,2,2,1…...
axios 发起 post请求 json 需要传入数据格式
• 1. axios 发起 post请求 json 传入数据格式 • 2. axios get请求 1. axios 发起 post请求 json 传入数据格式 使用 axios 发起 POST 请求并以 JSON 格式传递数据是前端开发中常见的操作。 下面是一个简单的示例,展示如何使用 axios 向服务器发送包含 JSON 数…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
