xinference 安装(http导致错误解决)
为什么要使用xinference
安装xinference
环境
1)conda create -n Xinference python=3.11
注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本
错误: error while attempting to bind on address,no dictory等错误,是由于ssl启动错误引起的。 建议直接安装xinference all版本
注意:单部署
启动:xinference-local --host 127.0.0.1 --port 9997
分类启动
前端:xinference-local --host 127.0.0.1 --port 9997
后端:nohup xinference-local --host 127.0.0.1 --port 9997 & > output.log
涉及版本有
# CUDA/CPU
pip install "xinference[transformers]"
pip install "xinference[vllm]"
pip install "xinference[sglang]"
# Metal(MPS)
pip install "xinference[mlx]"
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
普通启动:xinference-local --host 0.0.0.0 --port 9997
模型启动:
# CUDA/CPU XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope xinference-local --host 0.0.0.0 --port 9997
# Metal(MPS)
XINFERENCE_HOME=/path/.xinference XINFERENCE_MODEL_SRC=modelscope PYTORCH_ENABLE_MPS_FALLBACK=1 xinference-local --host 0.0.0.0 --port 9997
Xinference支持集群部署
主服务器启动 Supervisor
部署启动: xinference-supervisor -H 192.168.31.100 --port 9997
其他服务器启动 Worker
# 格式 xinference-worker -e "http://${主服务器IP}:9997" -H 当前服务器IP(子服务器IP) # 示例 xinference-worker -e "http://192.168.31.100:9997" -H 192.168.31.101
访问doc地址:http://localhost:9997/docs
(1)注册模型
xinference register --model-type LLM --file custom-glm4-chat.json --persist
(2)启动模型
xinference launch --model-name custom-glm4-chat --model-format pytorch --model-engine Transformers
Langchain-chatchat
错误1
"C:\Users\Administrator\Desktop\Langchain-Chatchat-master\libs\chatchat-server\chatchat\webui_pages\kb_chat.py", line 118, in kb_chat kb_list = [x["kb_name"] for x in api.list_knowledge_bases()
{ "input": "The food was delicious and the waiter...", "model": "360Zhinao-search", "encoding_format": "float" }
注意注意:
请用pip list查看自己httpx版本,我发现最新httpx==0.28.0是不行的,需要0.27.2版本才可以,重新安装后就不会报错了
导致错误是
langchain-chatchat报错Client.__init__() got an unexpected keyword argument ‘proxies‘
错误2
RuntimeError: Cluster is not available after multiple attempts
主要由于启动ip地址host错误,突出表现为0.0.0.0地址,应该本地化使用127.0.0.1
相关文章:

xinference 安装(http导致错误解决)
为什么要使用xinference 安装xinference 环境 1)conda create -n Xinference python3.11 注意:3.9 3.10均可能出现xinference 安装时候出现numpy兼容性,以及无法安装all版本 错误: error while attempting to bind on address&am…...

334递增的三元子序列贪心算法(思路解析+源码)
文章目录 题目思路解析源码总结题目 思路解析 有两种解法:解法一:动态规划(利用dp找到数组最长递增序列长度,判断是否大于3即可)本题不适用,因为时间复杂度为O(n^2),超时。 解法二:贪心算法:解法如上图,题目要求长度为三,设置第一个元素为长度1的值,是指长度二的…...

【Linux】29.Linux 多线程(3)
文章目录 8.4 生产者消费者模型8.4.1 为何要使用生产者消费者模型8.4.2 生产者消费者模型优点 8.5 基于BlockingQueue的生产者消费者模型8.5.1 C queue模拟阻塞队列的生产消费模型 8.6. 为什么pthread_cond_wait 需要互斥量?8.7 条件变量使用规范8.8 条件变量的封装8.9 POSIX信…...
利用UNIAPP实现短视频上下滑动播放功能
在 UniApp 中实现一个短视频上下滑动播放的功能,可以使用 swiper 组件来实现滑动效果,并结合 video 组件来播放短视频。以下是一个完整的示例,展示如何在 UniApp 中实现这一功能。 1. 创建 UniApp 项目 如果你还没有创建 UniApp 项目,可以使用 HBuilderX 创建一个新的项目…...
vscode+CMake+Debug实现 及权限不足等诸多问题汇总
环境说明 有空再补充 直接贴两个json tasks.json {"version": "2.0.0","tasks": [{"label": "cmake","type": "shell","command": "cmake","args": ["../"…...

【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧
在与大语言模型(Large Language Model, LLM)进行交互时,提示词的设计和参数设置直接影响生成内容的质量和效果。无论是通过 API 调用还是直接使用模型,掌握模型的参数配置方法都至关重要。本文将为您详细解析常见的参数设置及其应用场景,帮助您更高效地利用大语言模型。 …...

基于 .NET 8.0 gRPC通讯架构设计讲解,客户端+服务端
目录 1.简要说明 2.服务端设计 2.1 服务端创建 2.2 服务端设计 2.3 服务端业务模块 3.客户端设计-控制台 4.客户端设计-Avalonia桌面程序 5.客户端设计-MAUI安卓端程序 1.简要说明 gRPC 一开始由 google 开发,是一款语言中立、平台中立、开源的远程过程调用…...

6.Centos7上部署flask+SQLAlchemy+python+达梦数据库
情况说明 前面已经介绍了window上使用pycharm工具开发项目时,window版的python连接达梦数据库需要的第三方包。 这篇文章讲述,centos7上的python版本连接达梦数据库需要的第三方包。 之前是在windows上安装达梦数据库的客户端,将驱动包安装到windows版本的python中。(开…...

【C语言系列】深入理解指针(5)
深入理解指针(5) 一、sizeof和strlen的对比1.1sizeof1.2strlen1.3sizeof和strlen的对比 二、数组和指针笔试题解析2.1 一维数组2.2 字符数组2.2.1代码1:2.2.2代码2:2.2.3代码3:2.2.4代码4:2.2.5代码5&#…...
mysql自连接 处理层次结构数据
MySQL 的自连接(Self Join)是一种特殊的连接方式,它允许一个表与自身进行连接。自连接通常用于处理具有层次结构或递归关系的数据,或者当同一张表中的数据需要相互关联时。以下是几种常见的场景,说明何时应该使用自连接…...
##__VA_ARGS__有什么作用
##__VA_ARGS__ 是 C/C 中宏定义(Macro)的一种特殊用法,主要用于可变参数宏(Variadic Macros)的场景,解决当可变参数为空时可能导致的语法错误问题。以下是详细解释: 核心作用 消除空参数时的多余…...
鸿蒙 router.back()返回不到上个页面
1. 检查页面栈(Page Stack) 鸿蒙的路由基于页面栈管理,确保上一个页面存在且未被销毁。 使用 router.getLength() 检查当前页面栈长度: console.log(当前页面栈长度: ${router.getLength()}); 如果结果为 1,说明没有上…...

深度学习模型蒸馏技术的发展与应用
随着人工智能技术的快速发展,大型语言模型和深度学习模型在各个领域展现出惊人的能力。然而,这些模型的规模和复杂度也带来了显著的部署挑战。模型蒸馏技术作为一种优化解决方案,正在成为连接学术研究和产业应用的重要桥梁。本文将深入探讨模…...

STM32G0B1 ADC DMA normal
目标 ADC 5个通道,希望每1秒采集一遍; CUBEMX 配置 添加代码 #define ADC1_CHANNEL_CNT 5 //采样通道数 #define ADC1_CHANNEL_FRE 3 //单个通道采样次数,用来取平均值 uint16_t adc1_val_buf[ADC1_CHANNEL_CNT*ADC1_CHANNEL_FRE]; //传递…...

<tauri><rust><GUI>基于rust和tauri,在已有的前端框架上手动集成tauri示例
前言 本文是基于rust和tauri,由于tauri是前、后端结合的GUI框架,既可以直接生成包含前端代码的文件,也可以在已有的前端项目上集成tauri框架,将前端页面化为桌面GUI。 环境配置 系统:windows 10 平台:visu…...

模型 冗余系统(系统科学)
系列文章分享模型,了解更多👉 模型_思维模型目录。为防故障、保运行的备份机制。 1 冗余系统的应用 1.1 冗余系统在企业管理中的应用-金融行业信息安全的二倍冗余技术 在金融行业,信息安全是保障业务连续性和客户资产安全的关键。随着数字化…...
Deepseek部署的模型参数要求
DeepSeek 模型部署硬件要求 模型名称参数量显存需求(推理)显存需求(微调)CPU 配置内存要求硬盘空间适用场景DeepSeek-R1-1.5B1.5B4GB8GB最低 4 核(推荐多核)8GB3GB低资源设备部署,如树莓派、旧…...
AI-学习路线图-PyTorch-我是土堆
1 需求 PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】_哔哩哔哩_bilibili PyTorch 深度学习快速入门教程 配套资源 链接 视频教程 https://www.bilibili.com/video/BV1hE411t7RN/ 文字教程 https://blog.csdn.net/xiaotudui…...
[LeetCode]day17 349.两个数组的交集
https://leetcode.cn/problems/intersection-of-two-arrays/description/ 题目描述 给定两个数组 nums1 和 nums2 ,返回它们的交集。 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序 。 示例 1: 输入:nums1 [1,2,2,1…...

axios 发起 post请求 json 需要传入数据格式
• 1. axios 发起 post请求 json 传入数据格式 • 2. axios get请求 1. axios 发起 post请求 json 传入数据格式 使用 axios 发起 POST 请求并以 JSON 格式传递数据是前端开发中常见的操作。 下面是一个简单的示例,展示如何使用 axios 向服务器发送包含 JSON 数…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
GB/T 43887-2024 核级柔性石墨板材检测
核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标: 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...

7种分类数据编码技术详解:从原理到实战
在数据分析和机器学习领域,分类数据(Categorical Data)的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型,如性别(男/女)、颜色(红/绿/蓝)或产品类…...