当前位置: 首页 > news >正文

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案:

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案:

一、系统概述
本系统采用双巨控GRM241Q模块构建4G无线物联网络,实现山上液位数据实时传输至山下水泵站,通过预设逻辑自动控制水泵启停,同时支持APP远程监控及人工干预。

二、系统组成

  1. 监测端(山上)
  • 液位传感器:投入式/超声波液位计(4-20mA模拟量输出)
  • GRM241Q模块:直接接入液位信号(AI通道)
  • 供电:AC220V或太阳能供电系统(根据现场条件)
  • 4G天线:内置全频段天线,支持移动/联通/电信全网通
    在这里插入图片描述
  1. 控制端(山下)
  • GRM241Q模块:接收端
  • 继电器输出:直接驱动水泵接触器(DO通道)
  • 备用手动控制箱(带本地/远程切换功能)

三、核心功能实现

  1. 数据传输
  • 采用巨控专用安全通道,传输间隔可设(默认5秒)
  • 断线自动重连(支持缓存数据续传)
  • 双向通信延时<3秒(4G信号良好时)
  1. 控制逻辑
if 液位值 ≥ 高限设定值:启动水泵(DO1闭合)
elif 液位值 ≤ 低限设定值:停止水泵(DO1断开)
else:保持当前状态
  • 可增设:
    • 启停延时(防频繁动作)
    • 液位变化率预警
    • 水泵运行时长统计
  1. 安全保护
  • 硬件:模块自带浪涌保护(I/O口±2kV)
  • 软件:水泵最小间隔时间锁定(可设1-60分钟)
  • 异常报警:短信/APP推送(模块离线、液位超限、泵故障)

四、实施要点

  1. 硬件配置
  • 液位计供电需与GRM模块共地
  • 水泵控制回路加装中间继电器(模块DO口负载能力:2A/250VAC)
  • 信号线缆采用屏蔽双绞线(传输距离<300米)
  1. 参数设置
    通过巨控云平台(手机APP/网页)配置:
  • 液位量程(0-10m对应4-20mA)
  • 控制死区(建议设置5%量程)
  • 报警阈值(高报90%,低报10%)
  1. 网络优化
  • 双卡冗余(模块支持双SIM卡)
  • 信号增强(可选配外接高增益天线)
  • 数据补发(断网时可缓存10000条记录)

五、系统优势

  1. 可靠性
  • 工业级设计(工作温度-40℃~75℃)
  • 平均无故障时间>100,000小时
  • 通信成功率>99.9%(实测数据)
  1. 可扩展性
  • 剩余I/O可接入:水温监测、泵电流检测等
  • 支持Modbus RTU/TCP协议扩展第三方设备
  • 可同时接入SCADA系统(OPC UA接口)
  1. 维护便捷
  • 远程固件升级
  • 实时查看模块信号强度(APP显示)
  • 故障自诊断(LED状态指示)

六、预算清单

  1. 硬件部分
  • GRM241Q模块 ×2
  • 液位计(国产优质型)
  • 控制箱及附件
  • 安装辅材
  1. 服务部分
  • 巨控云平台服务费(首年免费)
  • 系统调试服务
  • 操作培训

七、实施周期

  • 硬件安装:1工作日
  • 系统调试:0.5工作日
  • 试运行:建议72小时

本方案充分利用GRM241Q模块的即插即用特性,通过4G网络实现可靠通信,结合巨控云平台实现智能控制与远程运维。建议定期(季度)检查模块运行状态,保持SIM卡有效流量即可保证系统长期稳定运行。

注:具体参数需根据现场实际工况(如扬程、管径、水泵功率等)进行校核,建议实施前进行24小时通讯稳定性测试。

相关文章:

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案:

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案: 一、系统概述 本系统采用双巨控GRM241Q模块构建4G无线物联网络,实现山上液位数据实时传输至山下水泵站,通过预设逻辑自动控制水泵启停,同时支持APP远程监控及人工…...

【JVM详解五】JVM性能调优

示例: 配置JVM参数运行 #前台运行 java -XX:MetaspaceSize-128m -XX:MaxMetaspaceSize-128m -Xms1024m -Xmx1024m -Xmn256m -Xss256k -XX:SurvivorRatio8 - XX:UseConcMarkSweepGC -jar /jar包路径 #后台运行 nohup java -XX:MetaspaceSize-128m -XX:MaxMetaspaceS…...

2.10日学习总结

题目一&#xff1a; AC代码 #include <stdio.h>#define N 1000000typedef long long l;int main() {int n, m;l s 0;l a[N 1], b[N 1];int i 1, j 1;scanf("%d %d", &n, &m);for (int k 1; k < n; k) {scanf("%lld", &a[k]);…...

疯狂前端面试题(四)

一、Ajax、JSONP、JSON、Fetch 和 Axios 技术详解 1. Ajax&#xff08;异步 JavaScript 和 XML&#xff09; 什么是 Ajax&#xff1f; Ajax 是一种用于在不刷新页面的情况下与服务器进行数据交互的技术。它通过 XMLHttpRequest 对象实现。 优点 - 支持同步和异步请求。 - 能…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-metrics.py

metrics.py ultralytics\utils\metrics.py 目录 metrics.py 1.所需的库和模块 2.def bbox_ioa(box1, box2, iouFalse, eps1e-7): 3.def box_iou(box1, box2, eps1e-7): 4.def bbox_iou(box1, box2, xywhTrue, GIoUFalse, DIoUFalse, CIoUFalse, eps1e-7): 5.def mas…...

SuperCopy解除网页禁用复制功能插件安装和使用

点击下载《SuperCopy解除网页禁用复制功能插件》 1. 前言 在当今数字化时代&#xff0c;网络已成为我们获取信息和知识的主要渠道。互联网如同一片浩瀚无垠的知识海洋&#xff0c;蕴藏着无数的资源&#xff0c;从学术论文到生活小窍门&#xff0c;从专业教程到娱乐资讯&#…...

UP-VLA:具身智体的统一理解与预测模型

25年1月来自清华大学和上海姚期智研究院的论文“UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent”。 视觉-语言-动作 (VLA) 模型的最新进展&#xff0c;利用预训练的视觉语言模型 (VLM) 来提高泛化能力。VLM 通常经过视觉语言理解任务的预训练&…...

Unity 基于状态机的逻辑控制详解

状态机是游戏开发中常用的逻辑控制方法&#xff0c;它可以将复杂的逻辑分解成多个独立的状态&#xff0c;并通过状态转移来控制逻辑的执行流程。本文将详细介绍如何在 Unity 中基于状态机实现逻辑控制&#xff0c;并提供技术详解和代码实现。 一、状态机简介 1.1 基本概念 状…...

傅里叶单像素成像技术研究进展

摘要&#xff1a;计算光学成像&#xff0c;通过光学系统和信号处理的有机结合与联合优化实现特定成像特性的成像系统&#xff0c;摆脱了传统成像系统的限制&#xff0c;为光学成像技术添加了浓墨重彩的一笔&#xff0c;并逐步向简单化与智能化的方向发展。单像素成像(Single-Pi…...

IDEA接入DeepSeek

IDEA 目前有多个途径可以接入deepseek&#xff0c;比如CodeGPT或者Continue&#xff0c;这里借助CodeGPT插件接入&#xff0c;CodeGPT目前用的人最多&#xff0c;相对更稳定 一、安装 1.安装CodeGPT idea插件市场找到CodeGPT并安装 2.创建API Key 进入deepseek官网&#xf…...

前端如何判断浏览器 AdBlock/AdBlock Plus(最新版)广告屏蔽插件已开启拦截

2个月前AdBlock/AdBlock Plus疑似升级了一次 因为自己主要负责面对海外的用户项目&#xff0c;发现以前的检测AdBlock/AdBlock Plus开启状态方法已失效了&#xff0c;于是专门研究了一下。并尝试了很多方法。 已失效的老方法 // 定义一个检测 AdBlock 的函数 function chec…...

macOS 上部署 RAGFlow

在 macOS 上从源码部署 RAGFlow-0.14.1&#xff1a;详细指南 一、引言 RAGFlow 作为一款强大的工具&#xff0c;在人工智能领域应用广泛。本文将详细介绍如何在 macOS 系统上从源码部署 RAGFlow 0.14.1 版本&#xff0c;无论是开发人员进行项目实践&#xff0c;还是技术爱好者…...

如何在Kickstart自动化安装完成后ISO内拷贝文件到新系统或者执行命令

如何在Kickstart自动化安装完成后ISO内拷贝文件到新系统或者执行命令 需求 在自动化安装操作系统完成后&#xff0c;需要对操作系统进行配置需要拷贝一些文件到新的操作系统中需要运行一些脚本 问题分析 Linux安装操作系统时&#xff0c;实际上是将ISO镜像文件中的操作系统…...

在服务器部署JVM后,如何评估JVM的工作能力,比如吞吐量

在服务器部署JVM后&#xff0c;评估其工作能力&#xff08;如吞吐量&#xff09;可以通过以下步骤进行&#xff1a; 1. 选择合适的基准测试工具 JMH (Java Microbenchmark Harness)&#xff1a;适合微基准测试&#xff0c;测量特定代码片段的性能。Apache JMeter&#xff1a;…...

攻防世界32 very_easy_sql【SSRF/SQL时间盲注】

不太会&#xff0c;以后慢慢看 被骗了&#xff0c;看见very_easy就点进来了&#xff0c;结果所有sql能试的全试了一点用都没有 打开源代码发现有个use.php 好家伙&#xff0c;这是真的在考sql吗...... 制作gopher协议的脚本&#xff1a; import urllib.parsehost "12…...

STM32G474--Whetstone程序移植(双精度)笔记

1 获取Whetstone程序 Whetstone程序&#xff0c;我用github被墙了&#xff0c;所以用了KK的方式。 获取的程序目录如上所示。 2 新建STM32工程 配置如上&#xff0c;生成工程即可。 3 在生成的工程中添加并修改Whetstone程序 3.1 实现串口打印功能 在生成的usart.c文件中…...

【DeepSeek × Postman】请求回复

新建一个集合 在 Postman 中创建一个测试集合 DeepSeek API Test&#xff0c;并创建一个关联的测试环境 DeepSeek API Env&#xff0c;同时定义两个变量 base_url 和 api_key 的步骤如下&#xff1a; 1. 创建测试集合 DeepSeek API Test 打开 Postman。点击左侧导航栏中的 Co…...

开源身份和访问管理方案之keycloak(一)快速入门

文章目录 什么是IAM什么是keycloakKeycloak 的功能 核心概念client管理 OpenID Connect 客户端 Client Scoperealm roleAssigning role mappings分配角色映射Using default roles使用默认角色Role scope mappings角色范围映射 UsersGroupssessionsEventsKeycloak Policy创建策略…...

基于PaddleOCR的图像文字识别与程序打包方法

目录 一、基本介绍 二、程序实现 1&#xff09;环境配置 2&#xff09;代码实现 3&#xff09;程序运行结果 三、程序打包 1&#xff09;使用pyinstaller打包程序 2&#xff09;添加依赖和模型数据 四、需要注意的问题 五、总结 一、基本介绍 本文主要介绍利用现有开源…...

单片机上SPI和IIC的区别

SPI&#xff08;Serial Peripheral Interface&#xff09;和IC&#xff08;Inter-Integrated Circuit&#xff09;是两种常用的嵌入式外设通信协议&#xff0c;它们各有优缺点&#xff0c;适用于不同的场景。以下是它们的详细对比&#xff1a; — 1. 基本概念 SPI&#xff0…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...