当前位置: 首页 > news >正文

学习率调整策略 | PyTorch 深度学习实战

前一篇文章,深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战

本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started

本篇文章内容来自于 强化学习必修课:引领人工智能新时代【梗直哥瞿炜】

PyTorch 学习率调整策略

  • 常见的学习率调节器
    • 学习率衰减
    • 指数衰减
    • 余弦学习率调节
    • 预热
  • 示例程序
    • 执行结果
      • 没有使用学习率自动调节时
      • 使用了学习率自动调节
      • 结论
  • 常见学习率调节器
  • Links

常见的学习率调节器

在这里插入图片描述

学习率衰减

在这里插入图片描述

指数衰减

在这里插入图片描述

余弦学习率调节

实现学习率循环降低或升高的效果

在这里插入图片描述

预热

在这里插入图片描述

示例程序

下面以指数衰减调节器(ExponentialLR)为例子,展示同样的数据条件下:不衰减学习率和衰减学习率两种情况下,损失函数loss的收敛情况。

import torch
torch.manual_seed(777)'''
Learning rate scheduler
'''
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset # 构造数据集加载器
from torch.utils.data import random_split # 划分数据集torch.manual_seed(777)# for reproducibility为了重复使用############################
# 生成数据
############################# 定义函数
def f(x,y):return x**2 + 2*y**2# 定义初始值
num_samples = 1000 # 1000 个样本点
X = torch.rand(num_samples) # 均匀分布
Y = torch.rand(num_samples)
Z = f(X,Y) + 3 * torch.randn(num_samples)# Concatenates a sequence of tensors along a new dimension.
# All tensors need to be of the same size.
# https://pytorch.org/docs/stable/generated/torch.stack.html
dataset = torch.stack([X,Y,Z], dim=1)
# print(dataset.shape) # torch.Size([1000, 3])# split data, 按照 7:3 划分数据集
train_size = int(0.7 * len(dataset))
test_size = len(dataset) - train_sizetrain_dataset, test_dataset = random_split(dataset=dataset, lengths=[train_size, test_size])# 将数据封装为数据加载器
# narrow 函数对数据进行切片操作,
# 
train_dataloader = DataLoader(TensorDataset(train_dataset.dataset.narrow(1,0,2), train_dataset.dataset.narrow(1,2,1)), batch_size=32, shuffle=False)
test_dataloader = DataLoader(TensorDataset(test_dataset.dataset.narrow(1,0,2), test_dataset.dataset.narrow(1,2,1)), batch_size=32, shuffle=False)############################
# 模型定义
############################# 定义一个简单的模型
class Model(nn.Module):def __init__(self):super().__init__()self.hidden = nn.Linear(2, 8)self.output = nn.Linear(8, 1)def forward(self, x):x = torch.relu(self.hidden(x))return self.output(x)############################
# 模型训练
############################# 超参数
num_epochs = 100
learning_rate = 0.1 # 学习率,调大一些更直观# 定义损失函数
loss_fn = nn.MSELoss()# 通过两次训练,对比有无调节器的效果
for with_scheduler in [False, True]:# 定义训练和测试误差数组train_losses = []test_losses = []# 初始化模型model = Model()# 定义优化器optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)# 定义学习率调节器scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.99)# 迭代训练for epoch in range(num_epochs):# 设定模型工作在训练模式model.train()train_loss = 0# 遍历训练集for inputs, targets in train_dataloader:# 预测、损失函数、反向传播optimizer.zero_grad()outputs = model(inputs)loss = loss_fn(outputs, targets)loss.backward()optimizer.step()# 记录 losstrain_loss += loss.item()# 计算 loss 并记录到训练误差train_loss /= len(train_dataloader)train_losses.append(train_loss)# 在测试数据集上评估model.eval()test_loss = 0with torch.no_grad():# 遍历测试集for inputs, targets in test_dataloader:# 预测、损失函数outputs = model(inputs)loss = loss_fn(outputs, targets)# 记录 losstest_loss += loss.item()# 计算 loss 并记录到测试误差test_loss /= len(test_dataloader)test_losses.append(test_loss)# 是否更新学习率if with_scheduler:scheduler.step()# 绘制训练和测试误差曲线plt.figure(figsize= (8, 4))plt.plot(range(num_epochs), train_losses, label="Train")plt.plot(range(num_epochs), test_losses, label="Test")plt.title("{0} lr_scheduler".format("With " if with_scheduler else "Without"))plt.legend()# plt.ylim((1,2))plt.show()

执行结果

没有使用学习率自动调节时

在这里插入图片描述

使用了学习率自动调节

在这里插入图片描述

结论

使用了学习率自动调节,学习的速度更快,收敛速度更快。

常见学习率调节器

## 学习率衰减,例如每训练 100 次就将学习率降低为原来的一半
scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=100, gamma=0.5)
## 指数衰减法,每次迭代将学习率乘上一个衰减率
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=optimizer,gamma=0.99)
## 余弦学习率调节,optimizer 初始学习率为最大学习率,eta_min 是最小学习率,T_max 是最大的迭代次数
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=100, eta_min=0.00001)
## 自定义学习率,通过一个 lambda 函数自定义实现学习率调节器
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda epoch: 0.99 ** epoch)
## 预热
warmup_steps = 20
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda=lambda t: min(t/warmup_steps, 0.001))

Links

  • PyTorch学习率调整策略.ipynb
  • 6.2 动态调整学习率
  • 【学习率】torch.optim.lr_scheduler学习率10种调整方法整理
  • 11.11. 学习率调度器
  • Pytorch – 手动调整学习率以及使用torch.optim.lr_scheduler调整学习率

相关文章:

学习率调整策略 | PyTorch 深度学习实战

前一篇文章,深度学习里面的而优化函数 Adam,SGD,动量法,AdaGrad 等 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课:引…...

DeepSeekMoE 论文解读:混合专家架构的效能革新者

论文链接:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models 目录 一、引言二、背景知识(一)MoE架构概述(二)现有MoE架构的问题 三、DeepSeekMoE架构详解(一&a…...

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案:

以下是基于巨控GRM241Q-4I4D4QHE模块的液位远程控制系统技术方案: 一、系统概述 本系统采用双巨控GRM241Q模块构建4G无线物联网络,实现山上液位数据实时传输至山下水泵站,通过预设逻辑自动控制水泵启停,同时支持APP远程监控及人工…...

【JVM详解五】JVM性能调优

示例: 配置JVM参数运行 #前台运行 java -XX:MetaspaceSize-128m -XX:MaxMetaspaceSize-128m -Xms1024m -Xmx1024m -Xmn256m -Xss256k -XX:SurvivorRatio8 - XX:UseConcMarkSweepGC -jar /jar包路径 #后台运行 nohup java -XX:MetaspaceSize-128m -XX:MaxMetaspaceS…...

2.10日学习总结

题目一&#xff1a; AC代码 #include <stdio.h>#define N 1000000typedef long long l;int main() {int n, m;l s 0;l a[N 1], b[N 1];int i 1, j 1;scanf("%d %d", &n, &m);for (int k 1; k < n; k) {scanf("%lld", &a[k]);…...

疯狂前端面试题(四)

一、Ajax、JSONP、JSON、Fetch 和 Axios 技术详解 1. Ajax&#xff08;异步 JavaScript 和 XML&#xff09; 什么是 Ajax&#xff1f; Ajax 是一种用于在不刷新页面的情况下与服务器进行数据交互的技术。它通过 XMLHttpRequest 对象实现。 优点 - 支持同步和异步请求。 - 能…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-metrics.py

metrics.py ultralytics\utils\metrics.py 目录 metrics.py 1.所需的库和模块 2.def bbox_ioa(box1, box2, iouFalse, eps1e-7): 3.def box_iou(box1, box2, eps1e-7): 4.def bbox_iou(box1, box2, xywhTrue, GIoUFalse, DIoUFalse, CIoUFalse, eps1e-7): 5.def mas…...

SuperCopy解除网页禁用复制功能插件安装和使用

点击下载《SuperCopy解除网页禁用复制功能插件》 1. 前言 在当今数字化时代&#xff0c;网络已成为我们获取信息和知识的主要渠道。互联网如同一片浩瀚无垠的知识海洋&#xff0c;蕴藏着无数的资源&#xff0c;从学术论文到生活小窍门&#xff0c;从专业教程到娱乐资讯&#…...

UP-VLA:具身智体的统一理解与预测模型

25年1月来自清华大学和上海姚期智研究院的论文“UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent”。 视觉-语言-动作 (VLA) 模型的最新进展&#xff0c;利用预训练的视觉语言模型 (VLM) 来提高泛化能力。VLM 通常经过视觉语言理解任务的预训练&…...

Unity 基于状态机的逻辑控制详解

状态机是游戏开发中常用的逻辑控制方法&#xff0c;它可以将复杂的逻辑分解成多个独立的状态&#xff0c;并通过状态转移来控制逻辑的执行流程。本文将详细介绍如何在 Unity 中基于状态机实现逻辑控制&#xff0c;并提供技术详解和代码实现。 一、状态机简介 1.1 基本概念 状…...

傅里叶单像素成像技术研究进展

摘要&#xff1a;计算光学成像&#xff0c;通过光学系统和信号处理的有机结合与联合优化实现特定成像特性的成像系统&#xff0c;摆脱了传统成像系统的限制&#xff0c;为光学成像技术添加了浓墨重彩的一笔&#xff0c;并逐步向简单化与智能化的方向发展。单像素成像(Single-Pi…...

IDEA接入DeepSeek

IDEA 目前有多个途径可以接入deepseek&#xff0c;比如CodeGPT或者Continue&#xff0c;这里借助CodeGPT插件接入&#xff0c;CodeGPT目前用的人最多&#xff0c;相对更稳定 一、安装 1.安装CodeGPT idea插件市场找到CodeGPT并安装 2.创建API Key 进入deepseek官网&#xf…...

前端如何判断浏览器 AdBlock/AdBlock Plus(最新版)广告屏蔽插件已开启拦截

2个月前AdBlock/AdBlock Plus疑似升级了一次 因为自己主要负责面对海外的用户项目&#xff0c;发现以前的检测AdBlock/AdBlock Plus开启状态方法已失效了&#xff0c;于是专门研究了一下。并尝试了很多方法。 已失效的老方法 // 定义一个检测 AdBlock 的函数 function chec…...

macOS 上部署 RAGFlow

在 macOS 上从源码部署 RAGFlow-0.14.1&#xff1a;详细指南 一、引言 RAGFlow 作为一款强大的工具&#xff0c;在人工智能领域应用广泛。本文将详细介绍如何在 macOS 系统上从源码部署 RAGFlow 0.14.1 版本&#xff0c;无论是开发人员进行项目实践&#xff0c;还是技术爱好者…...

如何在Kickstart自动化安装完成后ISO内拷贝文件到新系统或者执行命令

如何在Kickstart自动化安装完成后ISO内拷贝文件到新系统或者执行命令 需求 在自动化安装操作系统完成后&#xff0c;需要对操作系统进行配置需要拷贝一些文件到新的操作系统中需要运行一些脚本 问题分析 Linux安装操作系统时&#xff0c;实际上是将ISO镜像文件中的操作系统…...

在服务器部署JVM后,如何评估JVM的工作能力,比如吞吐量

在服务器部署JVM后&#xff0c;评估其工作能力&#xff08;如吞吐量&#xff09;可以通过以下步骤进行&#xff1a; 1. 选择合适的基准测试工具 JMH (Java Microbenchmark Harness)&#xff1a;适合微基准测试&#xff0c;测量特定代码片段的性能。Apache JMeter&#xff1a;…...

攻防世界32 very_easy_sql【SSRF/SQL时间盲注】

不太会&#xff0c;以后慢慢看 被骗了&#xff0c;看见very_easy就点进来了&#xff0c;结果所有sql能试的全试了一点用都没有 打开源代码发现有个use.php 好家伙&#xff0c;这是真的在考sql吗...... 制作gopher协议的脚本&#xff1a; import urllib.parsehost "12…...

STM32G474--Whetstone程序移植(双精度)笔记

1 获取Whetstone程序 Whetstone程序&#xff0c;我用github被墙了&#xff0c;所以用了KK的方式。 获取的程序目录如上所示。 2 新建STM32工程 配置如上&#xff0c;生成工程即可。 3 在生成的工程中添加并修改Whetstone程序 3.1 实现串口打印功能 在生成的usart.c文件中…...

【DeepSeek × Postman】请求回复

新建一个集合 在 Postman 中创建一个测试集合 DeepSeek API Test&#xff0c;并创建一个关联的测试环境 DeepSeek API Env&#xff0c;同时定义两个变量 base_url 和 api_key 的步骤如下&#xff1a; 1. 创建测试集合 DeepSeek API Test 打开 Postman。点击左侧导航栏中的 Co…...

开源身份和访问管理方案之keycloak(一)快速入门

文章目录 什么是IAM什么是keycloakKeycloak 的功能 核心概念client管理 OpenID Connect 客户端 Client Scoperealm roleAssigning role mappings分配角色映射Using default roles使用默认角色Role scope mappings角色范围映射 UsersGroupssessionsEventsKeycloak Policy创建策略…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...