自监督表征学习方法——BYOL(Bootstrap Your Own Latent)
自监督表征学习方法——BYOL(Bootstrap Your Own Latent)
参考文献:《Bootstrap Your Own Latent A New Approach to Self-Supervised Learning》
1.前言背景
学习良好的图像表示是计算机视觉中的一个关键挑战,因为它允许对下游任务进行有效的训练。许多不同的训练方法被提出来学习这种表征,通常依赖于视觉借口任务。
其中,最先进的对比方法是通过减少同一图像的不同增强视图的表示之间的距离和增加来自不同图像的增强视图的表示(负对)之间的距离来训练的。这些方法需要仔细处理负对,通过依赖大批量、内存库或定制的挖掘策略来检索负对。此外,它们的性能严重取决于图像增强的选择。

BYOL与以往自监督学习方法在ImageNet上的性能对比
2.BYOL介绍
BYOL在不使用负对的情况下,获得了比最先进的对比方法更高的性能。它迭代地引导网络的输出,以作为增强表示的目标。此外,BYOL对图像增强的选择比对比方法更鲁棒;我们怀疑不依赖负对是其提高鲁棒性的主要原因之一。虽然以前基于引导的方法使用了伪标签、聚类索引或一些标签,但我们建议直接引导表示。
特别是,BYOL使用两种神经网络,被称为在线网络和目标网络,它们相互作用和相互学习。
原理:从一个图像的增强视图开始,BYOL训练其在线网络来预测目标网络对同一图像的另一个增强视图的表示。
虽然这个目标允许折叠解,例如,为所有的图像输出相同的向量,但我们的经验表明,BYOL并不收敛于这样的解。

BYOL的框架图
如图所示,紫色部分为在线网络,红色部分为目标网络。
在线网络由一组权值θ定义,由三个阶段组成:编码器、投影仪
和预测器
。目标网络具有与在线网络相同的架构,但使用不同的权值ξ。
目标网络提供了对在线网络进行训练的回归目标,其参数ξ是在线参数θ的指数移动平均值。更准确地说,给定一个目标衰减率,在每个训练步骤后,我们执行以下更新,
![]()
具体流程如下:
①给定一组图像D,图像x∼D采样均匀从D,和两个分布的图像增强和
,BYOL产生两个增强视图
和
从x分别应用图像增强
和
。
②从第一个增广视图v中,在线网络输出一个表示法和一个投影法
。
目标网络从第二个增强视图输出
和目标投影
。
③然后,我们输出的预测和
。最后,我们定义了以下标准化预测和目标预测之间的均方误差,

将v输入目标网络,则得到,最终最小化
![]()
参数更新情况如下
![]()
为学习率。
3.实验结果
在ImageNet上做自监督训练。
①下游任务用作ImageNet识别

②ImageNet半监督任务
③迁移学习到别的数据集
④迁移学习到语义分割和目标检测以及深度估计
4.结论
这里介绍了一种新的图像表示的自监督学习算法BYOL。BYOL通过预测其输出的以前版本来学习它的表示,而不使用负对。并且展示了BYOL在各种基准测试上取得了最先进的结果。特别是,在使用ResNet-50(1×)的ImageNet线性评估协议下,BYOL实现了一种新的技术,并弥补了自监督方法和的监督学习基线之间的大部分剩余差距。使用ResNet-200(2×),BYOL达到了79.6%的前1位精度,比之前的技术水平(76.8%)有所提高,同时少使用了30%的参数。
然而,BYOL仍然依赖于特定于视觉应用程序的现有增强集。为了将BYOL推广到其他模式(例如,音频、视频、文本、……),有必要为每种模式获得类似的合适的扩充。设计这样的增强功能可能需要大量的努力和专业知识。因此,自动搜索这些增强功能将是将BYOL推广到其他模式的重要下一步。
相关文章:
自监督表征学习方法——BYOL(Bootstrap Your Own Latent)
自监督表征学习方法——BYOL(Bootstrap Your Own Latent) 参考文献:《Bootstrap Your Own Latent A New Approach to Self-Supervised Learning》 1.前言背景 学习良好的图像表示是计算机视觉中的一个关键挑战,因为它允许对下游任务进行有效的训练。许…...
均衡负载集群(LBC)-1
均衡负载集群(LBC) 客户–>通过Internet—>负载调度器—>n台真实服务器 负载调度器: 软件:LVS;Nginx;Haproxy硬件:F5; LVS架构: 使用到C/S(B/S…...
WebSocket
关于WebSocket: WebSocket 协议在2008年诞生,2011年成为国际标准。现在所有浏览器都已经支持了。 WebSocket 的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话…...
GA-PEG-GA,Glutaric Acid-PEG-Glutaric Acid,戊二酸-聚乙二醇-戊二酸供应
英文名称:Glutaric Acid-PEG-Glutaric Acid,GA-PEG-GA 中文名称:戊二酸-聚乙二醇-戊二酸 GA-PEG-GA是一种线性双功能PEG羧酸试剂。PEG和羧基COOH之间存在C4酯键。PEG羧酸可用于与氨基反应,与NHS和DCC、EDC等肽偶联试剂反应。 P…...
使用sqlmap + burpsuite sql工具注入拿flag
使用sqlmap burpsuite sql工具注入拿flag 记录一下自己重新开始学习web安全之路③。 目标网站:http://mashang.eicp.vip:1651/7WOY59OBj74nTwKzs3aftsh1MDELK2cG/ 首先判断网站是否存在SQL注入漏洞 1.找交互点 发现只有url这一个交互点,搜索框和登录…...
替代AG9300|替代NCS8823|CS5260 Type-C转VGA视频转换方案
替代AG9300|替代NCS8823|CS5260 Type-C转VGA视频转换方案 CS5260是一款是一款实现USB TYPE-C到VGA视频转换的单片机解决方案转换器。CS5260支持USB Type-C显示端口交替模式,CS5260可以将视频和音频流从USB Type-C接口传输到VGA端口。在CS5260芯片中,显示…...
乐鑫特权隔离机制的 OTA 固件升级
固件空中升级 (OTA, Over-The-Air) 是任何联网设备的重要功能之一,支持开发人员通过远程更新固件,以发布新功能或修复错误。乐鑫特权隔离框架中包含两类应用程序:受保护的应用程序 (protected_app) 和用户应用程序 (user_app) ,这…...
C++数据结构 —— 二叉搜索树
目录 1.二叉搜索树的基本概念 1.1二叉搜索树的基本特征 2.二叉搜索树的实现 2.1数据的插入(迭代实现) 2.2数据的搜索(迭代实现) 2.3中序遍历(递归实现) 2.4数据的删除(迭代实现) 2.5数据的搜索(递归实现) 2.6数据的插入(递归实现) 2.7数据的删除(递归实现) 2.8类的完…...
Maven面试题及答案
1、Maven有哪些优点和缺点 优点: 1、简化项目依赖管理 2、方便与持续集成工具(Jenkins)整合 3、有助于多模块项目开发,比如一个模块开发好后发布到仓库,依赖该模块时可以直接从远程仓库更新,不用自己手动去编译 4、有很多插件&am…...
WebRTC系列-Qos系列之接收放RTX处理
文章目录 1. RTX详解1.1 RTX包头解析1.2 RTX包中的OSN2. RTX在WebRTC中处理2.1 组包2.2 解包2.3 发送及接收处理流程2.3.1 发送流程2.3.2 rtx标记的设置流程2.3.3 解析流程2.3.4 RTX解包在上一篇 WebRTC系列-Qos系列之接收NACK文章中分析了接收到nack后解析的主要流程。在WebR…...
国内能否炒伦敦金,2023国际十大正规伦敦金交易平台排名
在目前的投资市场环境中,现货黄金是一种屡见不鲜的投资选择,它依靠国际化的投资环境,成为了世界范围内投资者的重要选择对象。进行现货黄金投资,人们除了要认识市场发展基本现状之外,更要做好基本面和技术面分析工作&a…...
react路由 - react-router-dom
react路由 现代的前端应用大多都是 SPA(单页应用程序),也就是只有一个 HTML 页面的应用程序。因为它的用户体验更好、对服务器的压力更小,所以更受欢迎。为了有效的使用单个页面来管理原来多页面的功能,前端路由应运而…...
01-RTOS
对于裸机而言,对于RTOS而言即:对于裸机,打游戏意味着不能回消息 回消息意味着不能打游戏对于RTOS 打游戏和裸机的切换只需要一个时间片节拍 1ms 从宏观来看 就是同时进行的两件事(但要在这两件事情的优先级一样的情况下࿰…...
信息安全管理
信息安全管理信息安全管理信息安全风险管理信息安全管理体系应急响应与灾难恢复应急响应概况信息系统灾难修复灾难恢复相关技术信息安全管理 管理概念:组织、协调、控制的活动,核心过程的管理控制 管理对象和组成:包括人员在内相关资产&…...
深度学习tips
1、datasets_make函数中最后全部转化为numpy形式 datanp.array(data)否则会出现问题,比如数据是103216,经过trainloader生成tensor后(batch_size为30),发现生成的数据为: data.shape #(10,) data[0].shape…...
2023-2-13 刷题情况
替换子串得到平衡字符串 题目描述 有一个只含有 ‘Q’, ‘W’, ‘E’, ‘R’ 四种字符,且长度为 n 的字符串。 假如在该字符串中,这四个字符都恰好出现 n/4 次,那么它就是一个「平衡字符串」。 给你一个这样的字符串 s,请通过…...
[HSCSEC 2023] rev,pwn,crypto,Ancient-MISC部分
比赛后有讲解,没赶上,前20比赛完1小时提交WP,谁会大半夜的起来写WP。总的感觉pwn,crypto过于简单,rev有2个难的不会,其它不是我的方向都感觉过于难,一个都没作。revDECOMPILEONEOONE入门题,一个…...
SpringBoot 接入 Spark
本文主要介绍 SpringBoot 与 Spark 如何对接,具体使用可以参考文章 SpringBoot 使用 Spark pom 文件添加 maven 依赖 spark-core:spark 的核心库,如:SparkConfspark-sql:spark 的 sql 库,如:s…...
在线支付系列【23】支付宝开放平台产品介绍
有道无术,术尚可求,有术无道,止于术。 文章目录前言支付产品App 支付手机网站支付电脑网站支付新当面资金授权当面付营销产品营销活动送红包会员产品App 支付宝登录人脸认证信用产品芝麻 GO芝麻先享芝麻免押芝麻工作证安全产品交易安全防护其…...
Python绝对路径和相对路径详解
在介绍绝对路径和相对路径之前,先要了解一下什么是当前工作目录。什么是当前工作目录每个运行在计算机上的程序,都有一个“当前工作目录”(或 cwd)。所有没有从根文件夹开始的文件名或路径,都假定在当前工作目录下。注…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...
从零手写Java版本的LSM Tree (一):LSM Tree 概述
🔥 推荐一个高质量的Java LSM Tree开源项目! https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree,专为高并发写入场景设计。 核心亮点: ⚡ 极致性能:写入速度超…...
