Aitken 逐次线性插值
Aitken 逐次线性插值
用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。
令 I i 1 , i 2 , . . . , i n ( x ) I_{{i_1},{i_2},...,i_n(x)} Ii1,i2,...,in(x)表示函数 f ( x ) f(x) f(x)关于节点 x i 1 , x i 2 , ⋅ ⋅ ⋅ , x i n x_{i_1},x_{i_2},\cdotp\cdotp\cdotp,x_{i_n} xi1,xi2,⋅⋅⋅,xin的 n − 1 n-1 n−1 次插值多项式, I i k ( x ) I_{i_k}(x) Iik(x)是零次多项式,记 I i k ( x ) = f ( x i k ) , i 1 , i 2 , ⋅ ⋅ ⋅ , i n I_{i_k(x)}=f(x_{i_k}),i_1,i_2,\cdotp\cdotp\cdotp,i_n Iik(x)=f(xik),i1,i2,⋅⋅⋅,in 均为非负整数。
一般情况,两个k 次插值多项式可通过线性插值得到 k + 1 k+1 k+1次插值多项式
I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)
这是关于节点 x 0 , ⋅ ⋅ ⋅ , x k , x l x_0,\cdotp\cdotp\cdotp,x_k,x_l x0,⋅⋅⋅,xk,xl的插值多项式。
有
I 0 , 1 , ⋯ , k , l ( x i ) = I 0 , 1 , ⋯ , k ( x i ) = f ( x i ) I_{0,1,\cdots,k,l}(x_i)=I_{0,1,\cdots,k}(x_i)=f(x_i) I0,1,⋯,k,l(xi)=I0,1,⋯,k(xi)=f(xi)
对于 i = 0 , 1 , ⋅ ⋅ ⋅ , k − 1 i=0,1,\cdotp\cdotp\cdotp,k-1 i=0,1,⋅⋅⋅,k−1 成立.当 x = x k x=x_k x=xk 时,有
I 0 , 1 , ⋯ , k , l ( x k ) = I 0 , 1 , ⋯ , k ( x k ) = f ( x k ) , I_{0,1,\cdots,k,l}(x_k)=I_{0,1,\cdots,k}(x_k)=f(x_k)\:, I0,1,⋯,k,l(xk)=I0,1,⋯,k(xk)=f(xk),
当 x = x l x=x_l x=xl时,有
I 0 , 1 , ⋯ , k , l ( x l ) = I 0 , 1 , ⋯ , k ( x l ) + f ( x l ) − I 0 , 1 , ⋯ , k ( x l ) x l − x k ( x l − x k ) = f ( x l ) . I_{0,1,\cdots,k,l}(x_l)=I_{0,1,\cdots,k}(x_l)+\frac{f(x_l)-I_{0,1,\cdots,k}(x_l)}{x_l-x_k}(x_l-x_k)=f(x_l). I0,1,⋯,k,l(xl)=I0,1,⋯,k(xl)+xl−xkf(xl)−I0,1,⋯,k(xl)(xl−xk)=f(xl).
这说明插值多项式 I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)满足插值条件,称其为 Aitken 逐次线性插值公式。
相关文章:
Aitken 逐次线性插值
Aitken 逐次线性插值 用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。 令 I i 1 , i 2…...
docker 安装 Prometheus、Node Exporter 和 Grafana
Docker Compose 配置文件 docker-compose.yml services:prometheus:image: prom/prometheus:latestcontainer_name: prometheusvolumes:- ./prometheus.yml:/etc/prometheus/prometheus.yml # 挂载配置文件 - prometheus_data:/prometheus # 持久化数据存储 command:- --…...
【LeetCode 热题100】74:搜索二维矩阵(二分、线性两种方式 详细解析)(Go 语言实现)
🚀 力扣热题 74:搜索二维矩阵(详细解析) 📌 题目描述 力扣 74. 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵 matrix : 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的…...
元数据、数据元、数据元素、数据项 和 主数据的概念
一、元数据 1.概念 元数据,又称中介数据、中继数据,为描述数据的数据。主要是描述数据属性的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。 2.实例 数据库中,表的名称、表字段名、其他相关的描述信息&a…...
阿里云cdn怎样设置图片压缩
阿里云 CDN 提供了图像加速服务,其中包括图像压缩功能。通过设置图片压缩,可以显著减小图片文件的体积,提升网站加载速度,同时减少带宽消耗。九河云来告诉你如何进行图片压缩吧。 如何设置阿里云 CDN 图片压缩? 1. 登…...
白话文实战Nacos(保姆级教程)
前言 上一篇博客 我们创建好了微服务项目,本篇博客来体验一下Nacos作为注册中心和配置中心的功能。 注册中心 如果我们启动了一个Nacos注册中心,那么微服务比如订单服务,启动后就可以连上注册中心把自己注册上去,这过程就是服务注册。每个微服务,比如商品服务都应该注册…...
7. 基于DeepSeek和智谱清言实现RAG问答
课件链接:https://cloud.189.cn/t/VNvmyimY7Vna(访问码:e4cb)天翼云盘是中国电信推出的云存储服务,为用户提供跨平台的文件存储、备份、同步及分享服务,是国内领先的免费网盘,安全、可靠、稳定、…...
【数据结构】双向链表(真正的零基础)
链表是一种物理存储单元上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过指针的链接来实现的!在上篇我们学习了单向链表,而单向链表虽然空间利用率高,插入和删除也只需改变指针就可以达到!但是我们在每次查找、删除、访问..…...
【生产变更】- Oracle RAC添加配置ipv6地址
【生产变更】- Oracle RAC添加配置ipv6地址 一、概述二、环境检查及备份2.1 检查并备份系统层面IP配置2.2 检查并备份监听配置2.3 检查并备份网卡配置2.4 检查并备份/etc/hosts三、集群层面配置3.1 检查集群配置3.2 停止集群组件3.3 Bond0网卡设置3.4 /etc/hosts文件配置3.5 重…...
Ai无限免费生成高质量ppt教程(deepseek+kimi)
第一步:打开deepseek官网(DeepSeek) 1.如果deepseek官网网络繁忙,解决方案如下: (1)使用easychat官网(EasyChat)使用deepseek模型,如图所示: (2)本地部署&…...
python全栈-python基础
python基础 文章目录 python基础python入门基础概念序列列表元组 -- 不可变序列字典字典的本质集合 控制语句选择结构 - 条件判断结构循环结构zip()推导式 函数及原理参数LEGB规则 面向对象私有属性和私有方法面向对象的特征重写__str__()方法super获得父类的定义特殊方法和运算…...
Python 鼠标轨迹 - 防止游戏检测
一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…...
力扣 零钱兑换
完全背包,动态规划例题。 题目 这题跟完全背包跟完全平方数有点相似。在完全平方数中,用一个dp数组去取得目标金额的每一步的最优,当前状态可能来自上一个dp,也有可能比上一个dp更小,因此往回退一步加一做比较。在完全…...
C# OpenCV机器视觉:OSTU算法实现背景差分的自适应分割
在一个热闹的科技公司里,阿强是一个负责图像分析的员工。他的日常工作就是从各种复杂的图像中提取出有用的信息,可这可不是一件轻松的事情哦 最近,阿强接到了一个艰巨的任务:要从一堆嘈杂的监控图像中分离出运动的物体,…...
快速搭建 Elasticsearch 8 集群:零基础实战与升级注意事项
引言 随着大数据技术的飞速发展,Elasticsearch 成为许多应用场景中不可或缺的技术,它以其高效的全文搜索引擎和分布式存储架构在企业和个人项目中占据了一席之地。无论是在日志分析、实时搜索还是数据可视化中,Elasticsearch 都发挥着重要的作用。 在这篇文章中,我们将为…...
基于扑克牌分发效果制作时的问题总结
其基本效果如图 1. 在overlay模式下直接使用position来移动 实现代码 public class Card : MonoBehaviour {public RectTransform target;public Button cardButton;private bool isPack false;public List<RectTransform> cards new List<RectTransform>(…...
老榕树的Java专题:Redis 从入门到实践
一、引言 在当今的软件开发领域,数据的高效存储和快速访问是至关重要的。Redis(Remote Dictionary Server)作为一个开源的、基于内存的数据结构存储系统,因其高性能、丰富的数据类型和广泛的应用场景,成为了众多开发者…...
【玩转 Postman 接口测试与开发2_019】第15章:利用 Postman 初探 API 性能测试(含实战截图)
《API Testing and Development with Postman》最新第二版封面 文章目录 第十五章 API 接口性能测试1 性能负载的类型2 Postman 负载配置3 Postman 性能测试实战3.1 Fixed 型负载下的性能测试3.2 基于数据驱动的 Postman 接口性能测试 4 性能测试的注意事项 写在前面 终于来到了…...
在 Qt 开发中,可以将 QML 封装成库
在 Qt 开发中,可以将 QML 封装成库,以便在多个项目中复用 QML 组件或模块。下面通过一个简单的例子说明如何将 QML 封装成库并在其他项目中使用。 1. 创建 QML 库项目 首先,我们创建一个新的 Qt 项目,专门用于封装 QML 组件。假…...
换电脑了如何快速导出vscode里的插件
当你换电脑了,之前vscode里的插件又不想全部手动重装,那么恭喜你,刷到了这篇文章。 1. 将 VSCode 添加到系统路径 macOS 打开 VSCode。按下 Command Shift P 打开命令面板。 3。 输入 Shell Command: Install ‘code’ command in PATH …...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
