Aitken 逐次线性插值
Aitken 逐次线性插值
用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。
令 I i 1 , i 2 , . . . , i n ( x ) I_{{i_1},{i_2},...,i_n(x)} Ii1,i2,...,in(x)表示函数 f ( x ) f(x) f(x)关于节点 x i 1 , x i 2 , ⋅ ⋅ ⋅ , x i n x_{i_1},x_{i_2},\cdotp\cdotp\cdotp,x_{i_n} xi1,xi2,⋅⋅⋅,xin的 n − 1 n-1 n−1 次插值多项式, I i k ( x ) I_{i_k}(x) Iik(x)是零次多项式,记 I i k ( x ) = f ( x i k ) , i 1 , i 2 , ⋅ ⋅ ⋅ , i n I_{i_k(x)}=f(x_{i_k}),i_1,i_2,\cdotp\cdotp\cdotp,i_n Iik(x)=f(xik),i1,i2,⋅⋅⋅,in 均为非负整数。
一般情况,两个k 次插值多项式可通过线性插值得到 k + 1 k+1 k+1次插值多项式
I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)
这是关于节点 x 0 , ⋅ ⋅ ⋅ , x k , x l x_0,\cdotp\cdotp\cdotp,x_k,x_l x0,⋅⋅⋅,xk,xl的插值多项式。
有
I 0 , 1 , ⋯ , k , l ( x i ) = I 0 , 1 , ⋯ , k ( x i ) = f ( x i ) I_{0,1,\cdots,k,l}(x_i)=I_{0,1,\cdots,k}(x_i)=f(x_i) I0,1,⋯,k,l(xi)=I0,1,⋯,k(xi)=f(xi)
对于 i = 0 , 1 , ⋅ ⋅ ⋅ , k − 1 i=0,1,\cdotp\cdotp\cdotp,k-1 i=0,1,⋅⋅⋅,k−1 成立.当 x = x k x=x_k x=xk 时,有
I 0 , 1 , ⋯ , k , l ( x k ) = I 0 , 1 , ⋯ , k ( x k ) = f ( x k ) , I_{0,1,\cdots,k,l}(x_k)=I_{0,1,\cdots,k}(x_k)=f(x_k)\:, I0,1,⋯,k,l(xk)=I0,1,⋯,k(xk)=f(xk),
当 x = x l x=x_l x=xl时,有
I 0 , 1 , ⋯ , k , l ( x l ) = I 0 , 1 , ⋯ , k ( x l ) + f ( x l ) − I 0 , 1 , ⋯ , k ( x l ) x l − x k ( x l − x k ) = f ( x l ) . I_{0,1,\cdots,k,l}(x_l)=I_{0,1,\cdots,k}(x_l)+\frac{f(x_l)-I_{0,1,\cdots,k}(x_l)}{x_l-x_k}(x_l-x_k)=f(x_l). I0,1,⋯,k,l(xl)=I0,1,⋯,k(xl)+xl−xkf(xl)−I0,1,⋯,k(xl)(xl−xk)=f(xl).
这说明插值多项式 I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)满足插值条件,称其为 Aitken 逐次线性插值公式。
相关文章:
Aitken 逐次线性插值
Aitken 逐次线性插值 用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。 令 I i 1 , i 2…...
docker 安装 Prometheus、Node Exporter 和 Grafana
Docker Compose 配置文件 docker-compose.yml services:prometheus:image: prom/prometheus:latestcontainer_name: prometheusvolumes:- ./prometheus.yml:/etc/prometheus/prometheus.yml # 挂载配置文件 - prometheus_data:/prometheus # 持久化数据存储 command:- --…...
【LeetCode 热题100】74:搜索二维矩阵(二分、线性两种方式 详细解析)(Go 语言实现)
🚀 力扣热题 74:搜索二维矩阵(详细解析) 📌 题目描述 力扣 74. 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵 matrix : 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的…...
元数据、数据元、数据元素、数据项 和 主数据的概念
一、元数据 1.概念 元数据,又称中介数据、中继数据,为描述数据的数据。主要是描述数据属性的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。 2.实例 数据库中,表的名称、表字段名、其他相关的描述信息&a…...
阿里云cdn怎样设置图片压缩
阿里云 CDN 提供了图像加速服务,其中包括图像压缩功能。通过设置图片压缩,可以显著减小图片文件的体积,提升网站加载速度,同时减少带宽消耗。九河云来告诉你如何进行图片压缩吧。 如何设置阿里云 CDN 图片压缩? 1. 登…...
白话文实战Nacos(保姆级教程)
前言 上一篇博客 我们创建好了微服务项目,本篇博客来体验一下Nacos作为注册中心和配置中心的功能。 注册中心 如果我们启动了一个Nacos注册中心,那么微服务比如订单服务,启动后就可以连上注册中心把自己注册上去,这过程就是服务注册。每个微服务,比如商品服务都应该注册…...
7. 基于DeepSeek和智谱清言实现RAG问答
课件链接:https://cloud.189.cn/t/VNvmyimY7Vna(访问码:e4cb)天翼云盘是中国电信推出的云存储服务,为用户提供跨平台的文件存储、备份、同步及分享服务,是国内领先的免费网盘,安全、可靠、稳定、…...
【数据结构】双向链表(真正的零基础)
链表是一种物理存储单元上非连续、非顺序的存储结构。数据元素的逻辑顺序是通过指针的链接来实现的!在上篇我们学习了单向链表,而单向链表虽然空间利用率高,插入和删除也只需改变指针就可以达到!但是我们在每次查找、删除、访问..…...
【生产变更】- Oracle RAC添加配置ipv6地址
【生产变更】- Oracle RAC添加配置ipv6地址 一、概述二、环境检查及备份2.1 检查并备份系统层面IP配置2.2 检查并备份监听配置2.3 检查并备份网卡配置2.4 检查并备份/etc/hosts三、集群层面配置3.1 检查集群配置3.2 停止集群组件3.3 Bond0网卡设置3.4 /etc/hosts文件配置3.5 重…...
Ai无限免费生成高质量ppt教程(deepseek+kimi)
第一步:打开deepseek官网(DeepSeek) 1.如果deepseek官网网络繁忙,解决方案如下: (1)使用easychat官网(EasyChat)使用deepseek模型,如图所示: (2)本地部署&…...
python全栈-python基础
python基础 文章目录 python基础python入门基础概念序列列表元组 -- 不可变序列字典字典的本质集合 控制语句选择结构 - 条件判断结构循环结构zip()推导式 函数及原理参数LEGB规则 面向对象私有属性和私有方法面向对象的特征重写__str__()方法super获得父类的定义特殊方法和运算…...
Python 鼠标轨迹 - 防止游戏检测
一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…...
力扣 零钱兑换
完全背包,动态规划例题。 题目 这题跟完全背包跟完全平方数有点相似。在完全平方数中,用一个dp数组去取得目标金额的每一步的最优,当前状态可能来自上一个dp,也有可能比上一个dp更小,因此往回退一步加一做比较。在完全…...
C# OpenCV机器视觉:OSTU算法实现背景差分的自适应分割
在一个热闹的科技公司里,阿强是一个负责图像分析的员工。他的日常工作就是从各种复杂的图像中提取出有用的信息,可这可不是一件轻松的事情哦 最近,阿强接到了一个艰巨的任务:要从一堆嘈杂的监控图像中分离出运动的物体,…...
快速搭建 Elasticsearch 8 集群:零基础实战与升级注意事项
引言 随着大数据技术的飞速发展,Elasticsearch 成为许多应用场景中不可或缺的技术,它以其高效的全文搜索引擎和分布式存储架构在企业和个人项目中占据了一席之地。无论是在日志分析、实时搜索还是数据可视化中,Elasticsearch 都发挥着重要的作用。 在这篇文章中,我们将为…...
基于扑克牌分发效果制作时的问题总结
其基本效果如图 1. 在overlay模式下直接使用position来移动 实现代码 public class Card : MonoBehaviour {public RectTransform target;public Button cardButton;private bool isPack false;public List<RectTransform> cards new List<RectTransform>(…...
老榕树的Java专题:Redis 从入门到实践
一、引言 在当今的软件开发领域,数据的高效存储和快速访问是至关重要的。Redis(Remote Dictionary Server)作为一个开源的、基于内存的数据结构存储系统,因其高性能、丰富的数据类型和广泛的应用场景,成为了众多开发者…...
【玩转 Postman 接口测试与开发2_019】第15章:利用 Postman 初探 API 性能测试(含实战截图)
《API Testing and Development with Postman》最新第二版封面 文章目录 第十五章 API 接口性能测试1 性能负载的类型2 Postman 负载配置3 Postman 性能测试实战3.1 Fixed 型负载下的性能测试3.2 基于数据驱动的 Postman 接口性能测试 4 性能测试的注意事项 写在前面 终于来到了…...
在 Qt 开发中,可以将 QML 封装成库
在 Qt 开发中,可以将 QML 封装成库,以便在多个项目中复用 QML 组件或模块。下面通过一个简单的例子说明如何将 QML 封装成库并在其他项目中使用。 1. 创建 QML 库项目 首先,我们创建一个新的 Qt 项目,专门用于封装 QML 组件。假…...
换电脑了如何快速导出vscode里的插件
当你换电脑了,之前vscode里的插件又不想全部手动重装,那么恭喜你,刷到了这篇文章。 1. 将 VSCode 添加到系统路径 macOS 打开 VSCode。按下 Command Shift P 打开命令面板。 3。 输入 Shell Command: Install ‘code’ command in PATH …...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
