大数据项目2:基于hadoop的电影推荐和分析系统设计和实现
前言
大数据项目源码资料说明:
大数据项目资料来自我多年工作中的开发积累与沉淀。
我分享的每个项目都有完整代码、数据、文档、效果图、部署文档及讲解视频。
可用于毕设、课设、学习、工作或者二次开发等,极大提升效率!
1、项目目标
本项目的目的是设计并实现一个基于Hadoop的电影推荐系统,以应对大数据环境下电影推荐服务的挑战。通过整合电影、评分和用户数据集,并利用MapReduce框架进行高效处理,系统能够为用户提供个性化的电影推荐。项目采用多种先进技术,包括Java、Maven、Hadoop、MapReduce、MySQL、Spring Boot和MyBatis等,以确保系统的稳定性和可扩展性。
作为毕业设计项目,本项目旨在通过实现离线推荐、热门推荐和最新推荐等模块,提升系统的推荐效果和用户体验。同时,项目还将进行深入的统计分析,包括电影评分分布、电影年份分布、不同分段占比、不同评分段的类型占比、不同类型演员前5名称以及电影国家分布占比等,以提供有价值的数据洞察和业务指导。通过本项目的实施,不仅可以锻炼和提升我的专业技能和综合素质,还可以为电影推荐领域的发展做出一定的贡献。
2、项目介绍
本项目是一个基于Hadoop的电影推荐系统,专注于大数据环境下的推荐服务。系统通过MapReduce框架处理电影、评分和用户数据集,利用协同过滤算法为用户生成个性化的电影推荐。项目包含数据存储、大数据分析、Web后端及可视化前端,确保推荐结果的准确性与用户界面的友好性。系统易于部署和运行,同时提供完整的数据文件和SQL文件,便于数据管理和系统维护。其中推荐模块包含:离线推荐,热门推荐,最新推荐等模块!
-
实现过程
-
数据采集
-
本项目旨在构建数据资产分析系统,通过从Kaggle网站下载电影评分数据集和用户数据集,对数据进行分析和处理。数据集包含电影ID、用户ID、电影海报URL、用户评分及用户名称等信息,为系统提供全面的数据支持。
-
-
-
数据集介绍
-
-
该数据集包含电影推荐所需的基本信息,具体包括用户ID(userid)、电影ID(movieid)、电影海报图片的URL链接(url)以及用户对电影的评分(rating,满分为10分)。该数据集可用于分析用户偏好,进而实现电影推荐功能。
-
-
-
数据清洗
-
-
在数据采集完成后,我们将对下载的数据使用spark技术进行清洗和预处理。这包括去除重复数据、处理缺失值、纠正错误数据等,以确保数据的质量和可靠性。同时,我们还将对数据的格式进行统一,方便后续的数据分析和处理。
-
-
大数据推荐计算
-
代码和业务介绍:
以下是一个基于MapReduce的电影推荐系统的详细流程,根据提供的步骤组织而成。这个系统将包括数据预处理、计算得分矩阵、计算同现矩阵、矩阵相乘、结果矩阵生成、排序推荐以及将结果写入MySQL数据库。
1. 数据预处理(Format reset)
Step1.run(config, paths);
目的:格式化输入数据,去重。
MapReduce Job:
Mapper:读取输入数据(如用户观看记录),进行简单的数据清洗(如去除无效记录),并输出唯一化的(用户ID, 电影ID)对。
Reducer:合并相同(用户ID, 电影ID)对的记录,确保每个记录唯一。
2. 计算得分矩阵(Score matrix)
Step2.run(config, paths);
目的:根据用户对电影的评分计算得分矩阵。
MapReduce Job:
Mapper:读取格式化后的数据,计算用户对电影的评分总和(或其他得分指标)。
Reducer:合并相同用户ID的评分,生成用户-电影得分矩阵。
3. 计算同现矩阵(Computing co-occurrence matrix)
Step3.run(config, paths);
目的:计算电影之间的同现矩阵,即哪些电影经常被一起观看。
MapReduce Job:
Mapper:读取格式化后的数据,对每对(用户ID, 电影ID)记录,输出所有电影对的同现信息(电影ID1, 电影ID2)。
Reducer:合并相同电影对的同现次数,生成电影-电影同现矩阵。
4. 同现矩阵和得分矩阵相乘(Multiply the co-occurrence matrix and the score matrix)
Step4.run(config, paths);
目的:将同现矩阵和得分矩阵相乘,得到电影推荐的基础矩阵。
MapReduce Job:
Mapper:读取同现矩阵和得分矩阵,进行矩阵相乘的准备工作,输出中间结果。
Reducer:合并中间结果,完成矩阵相乘运算,生成推荐基础矩阵。
5. 结果矩阵相加(Add the matrix after multiplication to obtain the result matrix)
Step5.run(config, paths);
目的:对推荐基础矩阵进行必要的聚合或累加操作,得到最终的推荐矩阵。
MapReduce Job(如果需要累加):
Mapper:读取推荐基础矩阵,进行必要的处理。
Reducer:合并相同电影ID的推荐值,生成最终的推荐矩阵。
6. 排序推荐(Sort recommendation)并写入MySQL
Step6.run(config, paths);
目的:对推荐结果进行排序,并将排序后的推荐列表写入MySQL数据库。
MapReduce Job(通常使用后续处理):
处理步骤:
读取推荐矩阵:从HDFS或其他存储读取最终的推荐矩阵。
排序:对每个用户的推荐电影按推荐值进行排序。
写入MySQL:使用JDBC或其他数据库连接技术,将排序后的推荐列表写入MySQL数据库。
-
-
javaWeb可视化
-
在Java Web项目中,结合HTML、ECharts、Spring Boot和MySQL等技术进行前后台搭建,可以构建一个功能丰富、交互性强的Web应用程序。以下是一个基于这些技术的Java Web前后台搭建的文字描述:
-
-
- 前端搭建:
-
HTML: 使用HTML来构建网页的基本结构和内容。通过定义HTML标签和属性,可以创建出各种页面元素,如标题、段落、图片、链接、表格、表单等。
CSS: 通过CSS为网页添加样式和布局。CSS可以控制HTML元素的外观和位置,使得页面更加美观和易于阅读。在项目中,可以将CSS样式定义在单独的文件中,并在HTML中通过链接引入。
JavaScript: 利用JavaScript为网页添加动态交互功能。JavaScript可以处理用户的输入、控制页面的行为、与服务器进行异步通信等。在项目中,可以使用JavaScript库(如jQuery)来简化代码编写,提高效率。
ECharts: 借助ECharts库,为网页添加丰富的图表展示功能。ECharts支持多种图表类型,如折线图、柱状图、饼图等,并且具有高度的可定制性和交互性。通过将ECharts图表嵌入到HTML页面中,可以直观地展示数据和进行数据分析。
-
-
- 后端搭建:
-
Spring Boot: 使用Spring Boot框架来构建后端服务。Spring Boot简化了Spring应用的初始搭建和开发过程,通过自动配置和约定优于配置的理念,可以快速开发、测试和部署Spring应用。在项目中,可以利用Spring Boot的Web模块和数据库访问模块,构建出稳定可靠的Web服务。
Java: 采用Java语言进行后端开发。Java是一种广泛使用的编程语言,具有跨平台、面向对象、多线程等特点。在Spring Boot项目中,可以使用Java编写控制器、服务、数据访问对象等组件,实现业务逻辑和数据访问功能。
MySQL: 使用MySQL数据库来存储和管理数据。MySQL是一个开源的关系型数据库管理系统,具有高性能、可扩展性和易用性等优点。在项目中,可以通过JDBC或JPA等持久层框架,实现与MySQL数据库的交互操作。
文件夹结构: 根据项目需求,设计合理的文件夹结构来组织代码和资源文件。例如,可以将源代码放在src目录下的main/java目录下,将资源配置文件放在resources目录下,将静态资源(如图片、CSS、JavaScript文件)放在static目录下,将模板文件(如HTML文件)放在templates目录下。这样可以提高代码的可读性和可维护性。
3、效果图
登录效果图

电影搜索模块
离线与热门推荐功能

代码结构图

资料目录图

资料目录展开图

4、如何获取
获取直达,www.baiyuntu.com
相关文章:
大数据项目2:基于hadoop的电影推荐和分析系统设计和实现
前言 大数据项目源码资料说明: 大数据项目资料来自我多年工作中的开发积累与沉淀。 我分享的每个项目都有完整代码、数据、文档、效果图、部署文档及讲解视频。 可用于毕设、课设、学习、工作或者二次开发等,极大提升效率! 1、项目目标 本…...
[笔记] 汇编杂记(持续更新)
文章目录 前言举例解释函数的序言函数的调用栈数据的传递 总结 前言 举例解释 // Type your code here, or load an example. int square(int num) {return num * num; }int sub(int num1, int num2) {return num1 - num2; }int add(int num1, int num2) {return num1 num2;…...
同步阻塞IO和多路复用IO(epoll)的性能对比
多路复用 I/O(如 epoll)相比传统的同步阻塞 I/O 在网络性能上具有显著优势,主要原因在于其高效的事件驱动机制和对高并发的优化能力。 1. 同步阻塞 I/O 的性能瓶颈 在传统的同步阻塞 I/O 模型中,每个网络连接通常需要一个独立的线…...
前端 CSS 动态设置样式::class、:style 等技巧详解
一、:class 动态绑定类名 v-bind:class(缩写为 :class)可以动态地绑定一个或多个 CSS 类名。 1. 对象语法 通过对象语法,可以根据条件动态切换类名。 <template><div :class"{ greenText: isActive, red-text: hasError }&…...
qt widget和qml界面集成到一起
将 Qt Widgets 和 QML 界面集成在一起可以利用 QQuickWidget 或 QQuickView。以下是基本步骤: 使用 QQuickWidget 创建 Qt Widgets 项目: 创建一个基于 Widgets 的应用程序。添加 QQuickWidget: 在你的窗口或布局中添加 QQuickWidget。 例如,可以在 QMainWindow 中使用: …...
BUU30 [网鼎杯 2018]Fakebook1
是一个登录界面,我们先注册一个试试: 用dirsearch扫描出来robots.txt,也发现了flag.php,并下载user.php.bak 源代码内容: <?phpclass UserInfo {public $name "";public $age 0;public $blog &quo…...
信息科技伦理与道德3-2:智能决策
2.2 智能推荐 推荐算法介绍 推荐系统:猜你喜欢 https://blog.csdn.net/search_129_hr/article/details/120468187 推荐系统–矩阵分解 https://blog.csdn.net/search_129_hr/article/details/121598087 案例一:YouTube推荐算法向儿童推荐不适宜视频 …...
《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合
《代码随想录第二十八天》——回溯算法理论基础、组合问题、组合总和III、电话号码的字母组合 本篇文章的所有内容仅基于C撰写。 1. 基础知识 1.1 概念 回溯是递归的副产品,它也是遍历树的一种方式,其本质是穷举。它并不高效,但是比暴力循…...
PromptSource官方文档翻译
目录 核心概念解析 提示模板(Prompt Template) P3数据集 安装指南 基础安装(仅使用提示) 开发环境安装(需创建提示) API使用详解 基本用法 子数据集处理 批量操作 提示创建流程 Web界面操作 手…...
USB子系统学习(四)用户态下使用libusb读取鼠标数据
文章目录 1、声明2、HID协议2.1、描述符2.2、鼠标数据格式 3、应用程序4、编译应用程序5、测试6、其它 1、声明 本文是在学习韦东山《驱动大全》USB子系统时,为梳理知识点和自己回看而记录,全部内容高度复制粘贴。 韦老师的《驱动大全》:商…...
Ansible简单介绍及用法
一、简介 Ansible是一个简单的自动化运维管理工具,基于Python语言实现,由Paramiko和PyYAML两个关键模块构建,可用于自动化部署应用、配置、编排task(持续交付、无宕机更新等)。主版本大概每2个月发布一次。 Ansible与Saltstack最大的区别是…...
目前推荐的优秀编程学习网站与资源平台,涵盖不同学习方式和受众需求
一、综合教程与互动学习平台 菜鸟教程 特点:适合零基础新手,提供免费编程语言教程(Python、Java、C/C++、前端等),页面简洁且包含大量代码示例,支持快速上手。适用人群:编程入门者、需要快速查阅语法基础的学习者。W3Schools 特点:专注于Web开发技术(HTML、CSS、JavaS…...
软件工程-软件需求规格说明(SRS)
基本介绍 目标 便于用户、分析人员、设计人员进行交流 支持目标软件系统的确认(验收) 控制系统进化过程(追加需求):拥有版本记录表 需要在软件分析完成后,编写完成软件需求说明书。 具体标准可参考GB…...
运维_Mac环境单体服务Docker部署实战手册
Docker部署 本小节,讲解如何将前端 后端项目,使用 Docker 容器,部署到 dev 开发环境下的一台 Mac 电脑上。 1 环境准备 需要安装如下环境: Docker:容器MySQL:数据库Redis:缓存Nginx&#x…...
UE5.5 PCGFrameWork--GPU CustomHLSL
在上一篇UE5.5 PCGFrameWork使用入门-CSDN博客 大致介绍了UE5 PCG框架的基本使用. 本篇探索PCGFrame的高级应用--GPU点云。也就是利用GPU HLSL编程对点云进行操纵,可以大幅度提升点云生成效率。 目前在UE5 PCG框架中,点云GPU的应用大致分为三类: Point…...
RabbitMQ 如何设置限流?
RabbitMQ 的限流(流量控制)主要依赖于 QoS(Quality of Service) 机制,即 prefetch count 参数。这个参数控制每个消费者一次最多能获取多少条未确认的消息,从而避免某个消费者被大量消息压垮。 1. RabbitMQ…...
json格式,curl命令,及轻量化处理工具
一. JSON格式 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于一个子集的JavaScript编程语言,使用人类易于阅读的文本格式来存储和表示数据。尽管名字中有“JavaScript”,但JSON是语言无关的,几…...
Postman面试问题
在 API 测试领域,Postman 已成为最流行的工具之一。无论是功能测试、自动化测试,还是接口调试,Postman 都扮演着重要角色。而在软件测试面试中,Postman 相关问题更是高频考点。如果你正在准备面试,赶紧看看这些Postman…...
【JVM详解四】执行引擎
一、概述 Java程序运行时,JVM会加载.class字节码文件,但是字节码并不能直接运行在操作系统之上,而JVM中的执行引擎就是负责将字节码转化为对应平台的机器码让CPU运行的组件。 执行引擎是JVM核心的组成部分之一。可以把JVM架构分成三部分&am…...
esp32 udp 客户端 广播
esp32 udp 客户端 广播 #include "bsp_udpc.h"// #include "com_config.h" // #include "com_xqueue.h"#include "bsp_udpc.h" #define TAG "bsp_udpc"#include <string.h> #include <sys/param.h> #include &q…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
