如何评估云原生GenAI应用开发中的安全风险(下)
以上就是如何评估云原生GenAI应用开发中的安全风险系列中的上篇内容,在本篇中我们介绍了在云原生AI应用开发中不同层级的风险,并了解了如何定义AI系统的风险。在本系列下篇中我们会继续探索我们为我们的云原生AI应用评估风险的背景和意义,并且介绍具体的AI应用风险评估的技术手段和解决方案。
为什么企业需要进行风险评估?
建立完善的AI云端应用系统风险管理框架不仅可以推动AI系统的安全和负责任的AI设计、开发与运营,同时也能为我们的业务和公司组织带来以下优势:
- 改进决策 – 通过了解AI云原生系统相关风险,企业可以更好地决策如何缓解这些风险,并在安全、负责任的环境下使用AI系统。
- 提高合规规划 – 风险评估框架可以帮助组织为行业和监管机构要求的相关法律法规中的风险评估要求做好准备。
- 建立信任 – 通过采取积极措施来降低AI系统的风险,企业可以向他们的客户和管理层表明他们AI云原生应用是安全而且符合负责任AI准则的。
如何评估风险?
第一步我们应确认需要评估的AI云原生应用对象,并识别应用所有的相关组件、业务。该对象一般是指具体的业务场景和云原生AI应用,描述我们的用户如何与AI云原生系统交互以实现特定业务需求。在创建对象描述时,我们应列出待解决的业务问题、涉及的相关组件、业务、人员群体、工作流程特征以及系统的关键输入和输出等信息。在相关方时,容易忽略一些潜在的参与者,通过以下示意图我们可以清晰的找到AI云原生应用中所有的相关角色。
图片来源:“信息技术 – 人工智能 – 人工智能概念和术语”
AI云原生系统风险评估的下一步是识别与该应用相关的潜在威胁。在考虑这些威胁时,可以借鉴负责任AI准则框架中定义的不同维度,例如公平性和稳健性等。不同的应用相关角色可能会在不同维度上受到不同程度的影响。例如对于终端用户来,AI云原生系统表现出轻微的中断可能被认为是低稳健性的风险,而AI云原生系统对不同人群产生的输出存在轻微差异可能被认为是低公平性的风险。
为了估算某个事件的风险,我们可以结合下方的可能性的维度表和严重性的维度表来衡量事件发生的概率及其后果程度。下方维度表的参考了NIIST RMF(是美国国家标准与技术研究院风险管理框架),该框架建议使用低、中、高、极高作为风险的程度,横轴纵轴采用分数1–5表明两个维度的量化程度。在定义了两个维度:可能性和严重性表后,可以使用风险矩阵方案来量化每个维度上各相关方的整体风险。我们通常就是使用下方的风险矩阵表来衡量AI应用系统的风险。
使用该风险矩阵,我们可以将低严重性且发生概率极低的事件归类为“极低风险”。一般初始评估的结果代表AI应用具有的固有风险,而风险缓解策略可以进一步降低这些风险。此过程可以重复、循环迭代进行,以生成其他未被评估的风险评级。如果在同一维度上识别出了AI系统内的多个风险,建议选择所有风险中最高的风险来创建最终的系统评估报告。利用最终评估报告,公司企业需要结合行业、建构机构的相关法规和政策,最终定义其AI云原生系统可以承受的风险水平是什么,便于制作应对预案、评估潜在的威胁带来的损失,保证不会对业务、企业造成负面的影响。
以上就是如何评估云原生GenAI应用开发中的安全风险系列中的下篇内容,在本篇中我们介绍了在云原生AI应用开发中如何为生成式AI应用评估风险。欢迎大家继续关注小李哥的生成式AI应用安全系列,了解国际前沿的亚马逊云科技解决方案,关注我不要错过未来更多的干货内容!
相关文章:

如何评估云原生GenAI应用开发中的安全风险(下)
以上就是如何评估云原生GenAI应用开发中的安全风险系列中的上篇内容,在本篇中我们介绍了在云原生AI应用开发中不同层级的风险,并了解了如何定义AI系统的风险。在本系列下篇中我们会继续探索我们为我们的云原生AI应用评估风险的背景和意义,并且…...

ASP.NET Core程序的部署
发布 不能直接把bin/Debug部署到生产环境的服务器上,性能低。应该创建网站的发布版,用【发布】功能。两种部署模式:“框架依赖”和“独立”。独立模式选择目标操作系统和CPU类型。Windows、Linux、iOS;关于龙芯。 网站的运行 在…...

《深度LSTM vs 普通LSTM:训练与效果的深度剖析》
在深度学习领域,长短期记忆网络(LSTM)以其出色的处理序列数据能力而备受瞩目。而深度LSTM作为LSTM的扩展形式,与普通LSTM在训练和效果上存在着一些显著的不同。 训练方面 参数数量与计算量:普通LSTM通常只有一层或较少…...

Spring依赖注入方式
写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...

Photoshop自定义键盘快捷键
编辑 - 键盘快捷键 CtrlShiftAltK 把画笔工具改成Q , 橡皮擦改成W , 涂抹工具改成E , 增加和减小画笔大小A和S 偏好设置 - 透明度和色域 设置一样颜色 套索工具 可以自定义套选一片区域 Shiftf5 填充 CtrlU 可以改颜色/色相/饱和度 CtrlE 合并图层 CtrlShiftS 另存…...

解决VsCode的 Vetur 插件has no default export Vetur问题
文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…...

关于浏览器缓存的思考
问题情境 开发中要实现一个非原生pdf预览功能,pdf链接放在一个固定的后台地址,当重新上传pdf后,预览pdf仍然是上一次的pdf内容,没有更新为最新的内容。 查看接口返回状态码为 200 OK(from disk cache), 表示此次pdf返回…...

Vue3+element-plus表单重置resetFields方法失效问题
遇到的其中一种情况: bug:在当前页面直接筛选重置,重置方法生效;但先筛选,再切换别的页面,再切回原页面重置,重置无效(keep-alive的页面无此bug) 原因: 1.Vue…...

解释和对比“application/octet-stream“与“application/x-protobuf“
介绍 在现代 Web 和分布式系统的开发中,数据的传输和交换格式扮演着关键角色。为了确保数据在不同系统之间的传输过程中保持一致性,MIME 类型(Multipurpose Internet Mail Extensions)被广泛应用于描述数据的格式和内容类型。在 …...

1158:求1+2+3+...
【题目描述】 用递归的方法求123……N123……N的值。 【输入】 输入N。 【输出】 输出和。 【输入样例】 5 【输出样例】 15 【解题思路】 递归 递归问题:求12…k的和递归关系:如果想求12…k的和,需要先求12…k-1的和,再加上…...

前端实现在PDF上添加标注(1)
前段时间接到一个需求,用户希望网页上预览PDF,同时能在PDF上添加文字,划线,箭头和用矩形框选的标注,另外还需要对已有的标注进行修改,删除。 期初在互联网上一通搜索,对这个需求来讲发现了两个问…...

螺旋矩阵 II
螺旋矩阵 II 一、题目描述 给定一个正整数 n,请你生成一个包含 1 到 n^2 所有元素的 n x n 正方形矩阵,元素顺序按顺时针的方式进行螺旋排列。 示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:…...

【愚公系列】《Python网络爬虫从入门到精通》001-初识网络爬虫
标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...

【linux学习指南】模拟线程封装与智能指针shared_ptr
文章目录 📝线程封装🌉 Thread.hpp🌉 Makefile 🌠线程封装第一版🌉 Makefile:🌉Main.cc🌉 Thread.hpp: 🌠线程封装第二版🌉 Thread.hpp:🌉 Main.cc …...

10、Python面试题解析:解释reduce函数的工作原理
reduce 是 Python 中的一个高阶函数,位于 functools 模块中。它的作用是将一个可迭代对象(如列表、元组等)中的元素依次通过一个二元函数(即接受两个参数的函数)进行累积计算,最终返回一个单一的结果。 1.…...

【含开题报告+文档+PPT+源码】学术研究合作与科研项目管理应用的J2EE实施
开题报告 本研究构建了一套集注册登录、信息获取与科研项目管理于一体的综合型学术研究合作平台。系统用户通过注册登录后,能够便捷地接收到最新的系统公告和科研动态新闻,并能进一步点击查看详尽的新闻内容。在科研项目管理方面,系统提供强…...

MySQL主从复制过程,延迟高,解决应对策略
MySQL主从复制延迟高是常见的性能问题,通常由主库写入压力大、从库处理能力不足或配置不当导致。以下从原因定位、优化策略和高级解决方案三个维度提供系统性解决方法: 一、快速定位延迟原因 1. 查看主从同步状态 SHOW SLAVE STATUS\G关键字段…...

Deepseek模拟阿里面试——数据库
在模拟阿里面试时,数据库部分需要涵盖广泛的知识点,包括基础概念、事务管理、索引优化、数据库设计、高并发处理、分布式数据库等。以下是对这些问题的详细分析和解答: 事务的ACID特性是什么,如何保证? ACID特性&…...

大数据学习之SparkStreaming、PB级百战出行网约车项目一
一.SparkStreaming 163.SparkStreaming概述 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Spark Streaming 是核心 Spark API 的扩展,支持实时数据…...

Java 高频面试闯关秘籍
目录 Java基础篇:涵盖OOP、多线程、集合等基础知识。Java高级篇:深入探讨HashMap、JVM、线程池等高级特性。Java框架篇:介绍Spring、SpringMVC、MyBatis等常用框架。Mysql数据库篇:包含SQL语句、事务、索引等数据库知识。分布式技…...

边缘计算网关驱动智慧煤矿智能升级——实时预警、低延时决策与数字孪生护航矿山安全高效运营
迈向智能化煤矿管理新时代 工业物联网和边缘计算技术的迅猛发展,煤矿安全生产与高效运营正迎来全新变革。传统煤矿监控模式由于现场环境复杂、数据采集和传输延时较高,已难以满足当下高标准的安全管理要求。为此,借助边缘计算网关的实时数据…...

Oracle认证大师(OCM)学习计划书
Oracle认证大师(OCM)学习计划书 一、学习目标 Oracle Certified Master(OCM)是Oracle官方认证体系中的最高级别认证,要求考生具备扎实的数据库管理技能、丰富的实战经验以及解决复杂问题的能力。本计划旨在通过系统化的…...

力扣 单词拆分
动态规划,字符串截取,可重复用,集合类。 题目 单词可以重复使用,一个单词可用多次,应该是比较灵活的组合形式了,可以想到用dp,遍历完单词后的状态的返回值。而这里的wordDict给出的是list&…...

如何在Linux中设置定时任务(cron)
在Linux系统中,定时任务是自动执行任务的一种非常方便的方式,常常用于定期备份数据、更新系统或清理日志文件等操作。cron是Linux下最常用的定时任务管理工具,它允许用户根据设定的时间间隔自动执行脚本和命令。在本文中,我们将详…...

C# ASP.NET核心特性介绍
.NET学习资料 .NET学习资料 .NET学习资料 在当今的软件开发领域中,C# ASP.NET凭借其强大的功能和丰富的特性,成为构建 Web 应用程序的重要技术之一。以下将详细介绍 C# ASP.NET的核心特性。 多语言支持 ASP.NET 支持多种语言进行开发,这使…...

Response 和 Request 介绍
怀旧网个人博客网站地址:怀旧网,博客详情:Response 和 Request 介绍 1、HttpServletResponse 1、简单分类 2、文件下载 通过Response下载文件数据 放一个文件到resources目录 编写下载文件Servlet文件 public class FileDownServlet exten…...

Spring常用注解和组件
引言 了解Spring常用注解的使用方式可以帮助我们更快速理解这个框架和其中的深度 注解 Configuration:表示该类是一个配置类,用于定义 Spring Bean。 EnableAutoConfiguration:启用 Spring Boot 的自动配置功能,让 Spring Boo…...

Spring中都应用了哪些设计模式?
好的!以下是您提到的八种设计模式在 Spring 中的简单示例: 1. 简单工厂模式 简单工厂模式通过传入参数来决定实例化哪个类。Spring 中的 BeanFactory 就是简单工厂模式的应用。 示例代码: // 1. 创建接口和具体实现类 public interface A…...

VSCode的安裝以及使用
c配置: 【MinGw-w64编译器套件】 https://blog.csdn.net/weixin_60915103/article/details/131617196?fromshareblogdetail&sharetypeblogdetail&sharerId131617196&sharereferPC&sharesourcem0_51662391&sharefromfrom_link Python配置: 【簡單ÿ…...

Datawhale 组队学习 Ollama教程 task1
一、Ollama 简介 比喻:Ollama 就像是一个“魔法箱子”,里面装满了各种大型语言模型(LLM)。你不需要懂复杂的魔法咒语(配置),只需要轻轻一按(一条命令),就能让…...