C# OpenCV机器视觉:SoftNMS非极大值抑制
嘿,你知道吗?阿强最近可忙啦!他正在处理一个超级棘手的问题呢,就好像在一个混乱的战场里,到处都是乱糟糟的候选框,这些候选框就像一群调皮的小精灵,有的重叠在一起,让阿强头疼不已。他的任务就是把这些重叠的候选框整理清楚,只留下最优秀的那些,让它们规规矩矩地排好队,为他的图像识别任务服务。
阿强听说了两种神奇的魔法 —— 非极大值抑制(NMS)和软非极大值抑制(SoftNMS),它们可以帮助他解决这个难题。这就像两个神奇的指挥官,能指挥这些候选框小精灵们听从命令,变得井然有序。
一、混乱的候选框战场
想象一下,阿强的图像里有好多候选框,每个候选框都觉得自己是最重要的,都想站在最前面,结果就是它们挤在一起,你压着我,我压着你,就像一堆挤在一起的小方块,乱成了一锅粥。这可不行啊,阿强需要从中挑选出最出色的候选框,不能让它们这样乱哄哄的。
阿强决定使用 OpenCvSharp 来施展魔法,他知道,这两种抑制方法就像两把神奇的扫帚,能把这些混乱的候选框清理干净呢 让我们来看看它们是怎么工作的吧。
二、非极大值抑制(NMS):严格的指挥官
首先登场的是 NMS,这个方法就像一个严格的指挥官,它的原则很简单:只留下最厉害的,把其他重叠的都赶走。
class NMS
{// 定义一个类来存储得分和索引 public class ScoreIndex{public float Score { get; set; }public int Index { get; set; }public ScoreIndex(float score, int index){Score = score;Index = index;}}static List<int> NmsBoxes(List<Rect> boxes, float[] scores, float iouThreshold){List<int> selectedIndices = new List<int>();int n = boxes.Count;// 将得分和索引组合在一起 List<ScoreIndex> indexedScores = new List<ScoreIndex>();for (int i = 0; i < n; i++){indexedScores.Add(new ScoreIndex(scores[i], i));}// 按得分降序排序 indexedScores.Sort((a, b) => b.Score.CompareTo(a.Score));bool[] selected = new bool[n];for (int i = 0; i < n; i++){int currentIndex = indexedScores[i].Index;if (selected[currentIndex]) continue;selectedIndices.Add(currentIndex);selected[currentIndex] = true;for (int j = i + 1; j < n; j++){int compareIndex = indexedScores[j].Index;if (selected[compareIndex]) continue;float iou = ComputeIoU(boxes[currentIndex], boxes[compareIndex]);if (iou > iouThreshold){selected[compareIndex] = true; // 抑制重叠框 }}}return selectedIndices;}static float ComputeIoU(Rect boxA, Rect boxB){// 计算交集 int x1 = Math.Max(boxA.X, boxB.X);int y1 = Math.Max(boxA.Y, boxB.Y);int x2 = Math.Min(boxA.X + boxA.Width, boxB.X + boxB.Width);int y2 = Math.Min(boxA.Y + boxA.Height, boxB.Y + boxB.Height);int interWidth = Math.Max(0, x2 - x1);int interHeight = Math.Max(0, y2 - y1);float interArea = interWidth * interHeight;// 计算并集 float boxAArea = boxA.Width * boxA.Height;float boxBArea = boxB.Width * boxB.Height;float unionArea = boxAArea + boxBArea - interArea;return interArea / unionArea;}
}
代码解析:
- 整理候选框和得分:首先,NMS 会把每个候选框的得分和索引组合在一起,就像给每个候选框小精灵贴上一个带有分数的名牌。然后,按照得分的高低给它们排好队,分数高的排在前面,这样最优秀的候选框就站在了最前面啦。接着,创建一个 selected 数组,用来标记哪些候选框已经被选中,哪些要被淘汰。
- 挑选最优候选框:从得分最高的候选框开始,把它标记为选中,放入 selectedIndices 列表中。然后,检查其他候选框,如果它们和这个选中的候选框重叠度(通过 ComputeIoU 计算)超过了 iouThreshold,就把它们标记为淘汰,就像指挥官说:“你和最优秀的重叠太多啦,你被淘汰啦!”ComputeIoU 函数会计算两个候选框的交并比(IoU),它是判断两个候选框重叠程度的重要指标哦。先找到两个框重叠部分的面积,再算出它们的并集面积,用重叠面积除以并集面积就得到了 IoU 值啦。如果 IoU 值大,说明它们重叠得多,需要处理一下。
三、软非极大值抑制(SoftNMS):温柔的协调者
接下来是 SoftNMS,它可不像 NMS 那么严格啦,它就像一个温柔的协调者,不会直接把重叠的候选框淘汰,而是会给它们一个机会,让它们的分数慢慢降低,变得不那么 “骄傲”。
class NMS
{// Soft-NMS 部分 static void SoftNMSRun(){// 示例候选框(x1, y1, x2, y2) List<Rect> boxes = new List<Rect>{new Rect(50, 50, 50, 50), // 框1 new Rect(55, 55, 50, 50), // 框2(与框1重叠) new Rect(200, 200, 50, 50) // 框3(不重叠) };// 示例得分 float[] scores = new float[] { 0.9f, 0.95f, 0.8f };// Soft-NMS 实现 List<int> selectedIndices = SoftNMS(boxes, scores, 0.5f, 0.3f);// 输出结果 Console.WriteLine("Selected boxes:");foreach (var index in selectedIndices){Console.WriteLine($"Box {index}: {boxes[index]}");}}static List<int> SoftNMS(List<Rect> boxes, float[] scores, float iouThreshold, float scoreThreshold){List<int> selectedIndices = new List<int>();int n = boxes.Count;// 将得分转换为 List List<float> scoreList = new List<float>(scores);for (int i = 0; i < n; i++){if (scoreList[i] > scoreThreshold){selectedIndices.Add(i);for (int j = i + 1; j < n; j++){float iou = ComputeIoU(boxes[i], boxes[j]);if (iou > iouThreshold){// 根据 IoU 衰减得分 scoreList[j] *= (float)Math.Exp(-(iou * iou) / 0.5);}}}}return selectedIndices;}static float ComputeIoU(Rect boxA, Rect boxB){// 计算交集 int x1 = Math.Max(boxA.X, boxB.X);int y1 = Math.Max(boxA.Y, boxB.Y);int x2 = Math.Min(boxA.X + boxA.Width, boxB.X + boxB.Width);int y2 = Math.Min(boxA.Y + boxA.Height, boxB.Y + boxB.Height);int interWidth = Math.Max(0, x2 - x1);int interHeight = Math.Max(0, y2 - y1);float interArea = interWidth * interHeight;// 计算并集 float boxAArea = boxA.Width * boxA.Height;float boxBArea = boxB.Width * boxB.Height;float unionArea = boxAArea + boxB.Area() - interArea;return interArea / unionArea;}
}
代码解析:
- 准备工作:SoftNMS 也会使用 ComputeIoU 计算候选框之间的重叠度。它把得分存储在 scoreList 中,准备开始调整这些得分。
- 温柔的调整:对于每个候选框,如果它的得分超过 scoreThreshold,就先把它加入 selectedIndices 列表。然后,检查其他候选框,如果它们和这个候选框重叠度超过 iouThreshold,不会直接淘汰它们,而是根据重叠程度 iou 来降低它们的得分哦,使用 scoreList[j] *= (float)Math.Exp(-(iou * iou) / 0.5) 这个神奇的公式,就像给它们的分数打个折扣,让它们变得不那么突出啦。
四、实战对比:NMS 和 SoftNMS 的 “战斗”
阿强开始测试啦,他准备了一些候选框,让 NMS 和 SoftNMS 分别施展魔法。
当 NMS 上场时,它会非常严格地挑选候选框,一旦发现重叠的,就毫不留情地淘汰。结果呢,留下来的候选框都是最优秀的,但是有些原本也不错的候选框可能就被彻底淘汰啦,就像一场残酷的淘汰赛。
而 SoftNMS 呢,它会让那些重叠的候选框分数降低,这样它们还有机会哦,也许经过一轮调整,有些候选框虽然分数低了点,但还是能留下来呢。这就像是一场温柔的选拔,给每个候选框一个表现的机会,只是分数会根据它们的表现有所调整。
五、实战检验:谁更厉害?
阿强把两种方法都用在自己的图像识别任务上,发现它们各有千秋哦!
- NMS:优点:处理速度快,能迅速选出最突出的候选框,非常适合那些需要快速得出结果,对准确性要求不是特别高的场景。就像短跑比赛,只选最快的选手,其他选手都被淘汰啦。缺点:可能会过于严格,有些稍微差一点的候选框可能也被误淘汰啦,可能会丢失一些有用的信息哦。
- SoftNMS:优点:更灵活,能保留更多的信息,不会一下子把有重叠的候选框都淘汰,对于一些复杂的图像,能给出更丰富的结果,就像一场综合考核,给每个选手打分,根据表现调整分数,不会轻易放弃任何一个。缺点:计算量会大一点,因为要计算得分的衰减,就像多了一些额外的考核项目,速度会慢一些。
阿强根据不同的任务,开始灵活使用这两种方法啦。有时候他需要快速筛选,就用 NMS;有时候需要更细致的结果,就用 SoftNMS。
“哈哈,有了这两个神奇的方法,我再也不怕候选框小精灵们捣乱啦!” 阿强高兴地说。
从那以后,阿强在图像处理的世界里更加得心应手,他的图像识别任务变得越来越出色,大家都对他刮目相看呢。而 NMS 和 SoftNMS 这两个魔法,也成了他手中的秘密武器,帮助他在图像处理的战场上屡战屡胜哦 你是不是也觉得它们很神奇呀?快来和阿强一起,用它们解决你的图像处理难题吧
相关文章:

C# OpenCV机器视觉:SoftNMS非极大值抑制
嘿,你知道吗?阿强最近可忙啦!他正在处理一个超级棘手的问题呢,就好像在一个混乱的战场里,到处都是乱糟糟的候选框,这些候选框就像一群调皮的小精灵,有的重叠在一起,让阿强头疼不已。…...

kamailio关于via那点事
如果kamailio作为代理服务器,在转到目的路由时 不删除原始的via信息 会造成信息泄露 如果 Kamailio 作为代理服务器(SIP Proxy)在转发 SIP 请求时不删除原始的 Via 信息,这确实可能会造成信息泄露。 📌 为什么不删除 …...

[MFC] 使用控件
介绍如何使用控件,以及如何获取控件中的数值 check Box 添加点击事件,即选中和取消选中触发的事件 第一种方式是按照如下方式第二种方式是直接双击点击进去 void CMFCApplication1Dlg::OnBnClickedCheckSun() {// TODO: 在此添加控件通知处理程序代…...

【探索未来科技】2025年国际学术会议前瞻
【探索未来科技】2025年国际学术会议前瞻 【探索未来科技】2025年国际学术会议前瞻 文章目录 【探索未来科技】2025年国际学术会议前瞻前言1. 第四届电子信息工程、大数据与计算机技术国际学术会议( EIBDCT 2025)代码示例:机器学习中的线性回…...

使用wpa_supplicant和wpa_cli 扫描wifi热点及配网
一:简要说明 交叉编译wpa_supplicant工具后会有wpa_supplicant和wpa_cli两个程序生产,如果知道需要连接的wifi热点及密码的话不需要遍历及查询所有wifi热点的名字及信号强度等信息的话,使用wpa_supplicant即可,否则还需要使用wpa_…...

Sealos的k8s高可用集群搭建
Sealos 介绍](https://sealos.io/zh-Hans/docs/Intro) Sealos 是一个 Go 语言开发的简单干净且轻量的 Kubernetes 集群部署工具,能很好的支持在生产环境中部署高可用的 Kubernetes 集群。 Sealos 特性与优势 支持离线安装,工具与部署资源包分离&#…...

Android和DLT日志系统
1 Linux Android日志系统 1.1 内核logger机制 drivers/staging/android/logger.c static size_t logger_offset( struct logger_log *log, size_t n) { return n & (log->size - 1); } 写的off存在logger_log中(即内核内存buffer)&am…...

【openresty服务器】:源码编译openresty支持ssl,增加service系统服务,开机启动,自己本地签名证书,配置https访问
1,openresty 源码安装,带ssl模块 https://openresty.org/cn/download.html (1)PCRE库 PCRE库支持正则表达式。如果我们在配置文件nginx.conf中使用了正则表达式,那么在编译Nginx时就必须把PCRE库编译进Nginx…...

如何将网站提交百度收录完整SEO教程
百度收录是中文网站获取流量的重要渠道。本文以我的网站,www.mnxz.fun(当然现在没啥流量) 为例,详细讲解从提交收录到自动化维护的全流程。 一、百度收录提交方法 1. 验证网站所有权 1、登录百度搜索资源平台 2、选择「用户中心…...

【STM32】ADC|多通道ADC采集
本次实现的是ADC实现数字信号与模拟信号的转化,数字信号时不连续的,模拟信号是连续的。 1.ADC转化的原理 模拟-数字转换技术使用的是逐次逼近法,使用二分比较的方法来确定电压值 当单片机对应的参考电压为3.3v时,0~ 3.3v(模拟信…...

蓝桥杯算法日记|贪心、双指针
3412 545 2928 2128 贪心学习总结: 1、一般经常用到sort(a,an);【a[n]】排序,可以给整数排,也可以给字符串按照字典序排序 2、每次选最优 双指针 有序数组、字符串、二分查找、数字之和、反转字…...

ArcGIS Pro SDK (二十七)自定义许可
ArcGIS Pro SDK (二十七)自定义许可 环境:Visual Studio 2022 + .NET6 + ArcGIS Pro SDK 3.0 文章目录 ArcGIS Pro SDK (二十七)自定义许可1 在Config.xaml中添加扩展配置2 在Module1.cs中实现接口IExtensionConfig1 在Config.xaml中添加扩展配置 <modules><inse…...

通过客户端Chatbox或OpenwebUI访问识别不到本地ollama中的模型等问题的解决
Chatbox和Open WebUI 等无法获取到 Ollama里的模型,主要是由以下原因导致: Ollama 服务未正确暴露给 Docker 容器或客户端模型未正确下载或名称不匹配网络配置或权限问题 排查以上问题的思路首先排查ollama服务是否启动,然后再看端口号 使…...

速度超越DeepSeek!Le Chat 1100tok/s闪电回答,ChatGPT 4o和DeepSeek R1被秒杀?
2023年,当全球科技界还在ChatGPT引发的AI狂潮中沉浮时,一场来自欧洲的"静默革命"正悄然改变游戏规则。法国人工智能公司Mistral AI推出的聊天机器人Le Chat以"比ChatGPT快10倍"的惊人宣言震动业界,其背后承载的不仅是技术…...

JVM速成=。=
JVM跨平台原理 跨平台:一次编译,到处运行 本质:不同操作系统上运行的JVM不一样,只需要把java程序编译成一份字节码文件,JVM执行不同的字节码文件。 Java是高级语言,提前编译一下(变成字节码文件…...

Packer 手动修复安装腾讯云插件
文章目录 Packer [腾讯云插件文档](https://developer.hashicorp.com/packer/integrations/hashicorp/tencentcloud) 提供的版本:v1.2.0,目前 Packer 构建镜像时,不支持现有2种[硬盘类型](https://www.tencentcloud.com/zh/document/product/…...

学习总结三十
下头论文 # P10605 下头论文 题目背景 莲子一直在苦恼关于论文的灵感。她为此花了太多时间,以至于没有时间理会她的伙伴梅莉。 题目描述 一天,莲子发现了一个绝妙的点子,并希望通过实验等过程将其完善。具体来说,她需要依次完成 n…...

开发完的小程序如何分包
好几次了,终于想起来写个笔记记一下 我最开始并不会给小程序分包,然后我就各种搜,发现讲的基本上都是开发之前的小程序分包,可是我都开发完要发布了,提示我说主包太大需要分包,所以我就不会了。。。 好了…...

Flutter PIP 插件 ---- Android
在 Flutter Android 应用中实现画中画功能 画中画(Picture-in-Picture, PiP)模式允许您的应用在一个固定在屏幕角落的小窗口中运行,同时用户可以与其他应用进行交互。本指南将介绍如何在 Flutter Android 应用中实现画中画功能,包括其局限性和解决方案。 项目地址 flutter_p…...

【20250211】字符串:459.重复的子字符串
#方法一:暴力求解法 # class Solution: # def repeatedSubstringPattern(self, s): # n len(s) # substr "" # #只重复一次不算“重复多次” # if n < 1: # return False # else: # …...

【DeepSeek学Cuda】矩阵转置:行读取优先还是列读取优先。
目录 **1. 实现A(按行读取,按列存储)2. 实现B(按列读取,按行存储)**3. 哪种更好 Professional cuda programming5. "当L1缓存被禁用时,所有内存访问都直接指向全局内存(Global …...

如何将3DMAX中的3D文件转换为AutoCAD中的2D图形?
大家好,今天我们来探讨一下如何将3DMAX中的3D文件转换为AutoCAD中的2D图形。无论是出于设计交流、施工准备还是其他实际需求,这种转换在工程设计领域都是一项非常实用的技能。接下来,我将为大家详细介绍几种实现这一转换的方法,帮助大家轻松跨越3D与2D设计之间的鸿沟。让我…...

Softhsm储存安全数据性能整理
目标:存储百万条数据对象 测试方案一:总大小2GB,每个数据对象大小约512KB,总条数4096条; 测试方案一:总大小2GB,每个数据对象大小约256B,总条数8388608条; 测试环境&am…...

【C++】——精细化哈希表架构:理论与实践的综合分析
先找出你的能力在哪里,然后再决定你是谁。 —— 塔拉韦斯特弗 《你当像鸟飞往你的山》 目录 1. C 与哈希表:核心概念与引入 2. 哈希表的底层机制:原理与挑战 2.1 核心功能解析:效率与灵活性的平衡 2.2 哈希冲突的本质&#x…...

【cocos creator】拖拽排序列表
DEMO下载 GameCtrl.ts import ItemCtrl from "./ItemCtrl";const { ccclass, property } cc._decorator;ccclass export default class GameCtrl extends cc.Component {property(cc.Node)content: cc.Node null;property(cc.Node)prefab: cc.Node null;arr []…...

b站——《【强化学习】一小时完全入门》学习笔记及代码(1-3 多臂老虎机)
问题陈述 我们有两个多臂老虎机(Multi-Armed Bandit),分别称为左边的老虎机和右边的老虎机。每个老虎机的奖励服从不同的正态分布: 左边的老虎机:奖励服从均值为 500,标准差为 50 的正态分布,即…...

【Mac排错】ls: command not found 终端命令失效的解决办法
【TroubleShooting on Mac】ls: command not found 终端命令失效的解决办法 A Solution to Solve “Command not found” of Terminal on Mac 一直在使用心爱的MacBook Pro的Terminal,并且为她定制了不同的Profile。 这样,看起来她可以在不同季节&…...

探秘Hugging Face与DeepSeek:AI开源世界的闪耀双子星
目录 一、引言:AI 开源浪潮的澎湃二、Hugging Face:AI 开源社区的基石(一)起源与发展历程(二)核心技术与特色(三)在 AI 领域的广泛应用 三、DeepSeek:东方崛起的 AI 新势…...

SkyWalking 10.1.0 实战:从零构建全链路监控,解锁微服务性能优化新境界
文章目录 前言一、集成SkyWalking二、SkyWalking使用三、SkyWalking性能剖析四、SkyWalking 告警推送4.1 配置告警规则4.2 配置告警通知地址4.3 下发告警信息4.4 测试告警4.5 慢SQL查询 总结 前言 在传统监控系统中,我们通过进程监控和日志分析来发现系统问题&…...

本地部署DeepSeek-R1(Mac版)
本地部署DeepSeek-R1(Mac版) 前言:过年这段时间,DeepSeek火遍全球,但遭受黑客攻击,10次对话基本9次都是服务器繁忙,请稍后重试。那么,本地部署整起来 总体来说,本地部署…...