当前位置: 首页 > news >正文

机器学习:二分类和多分类

1. 二分类(Binary Classification)

定义

二分类是指将输入样本分成两个互斥的类别。例如:

  • 邮件 spam 或不是 spam。
  • 病人是有病或健康。
  • 物品是正品或假货。
实现方法

二分类任务可以通过多种算法实现,包括:

  • 逻辑回归(Logistic Regression):通过sigmoid函数将输出值映射到0和1之间,用于概率预测。
  • 决策树(Decision Tree):基于特征划分数据空间,适用于分类问题。
  • 支持向量机(SVM):通过寻找最大间隔超平面来进行分类。
  • 神经网络:使用多层感知机或卷积神经网络等模型进行分类。
评估指标
  • 准确率(Accuracy):预测正确的样本数占总样本的比例。
  • 精确率(Precision):所有被预测为正类的样本中,实际是正类的比例。
  • 召回率(Recall):所有实际是正类的样本中,被正确预测的比例。
  • F1-score:精确率和召回率的调和平均数,综合衡量模型性能。

2. 多分类(Multi-Class Classification)

定义

多分类是指将输入样本分成三个或更多互斥类别。例如:

  • 图像分类:识别图片中的物体(如猫、狗、鸟等)。
  • 文本分类:将文本归类到多个主题类别中。
实现方法

多分类任务可以通过以下两种方式实现:

  1. One-vs-Rest (OvR) 或 One-vs-One (OvO)

    • One-vs-Rest:将多分类问题分解为多个二分类问题。对于每个类别,将其视为正类,其余类别视为负类,训练一个二分类模型。预测时,选择概率最大的类别。
    • One-vs-One:将所有类别两两配对,训练一个二分类模型。预测时,通过投票或概率加权确定最终类别。
  2. 专门的多分类算法

    • Softmax 回归:用于输出多个类别的概率分布。
    • 决策树/随机森林:可以直接处理多分类问题。
    • 神经网络:使用 Softmax 激活函数进行多分类预测。
评估指标

与二分类类似,多分类任务中也可以计算精确率、召回率和 F1-score,但这些指标通常需要对每个类别分别计算,并取平均值(如宏均值或微均值)。


3. 二分类与多分类的关系

  • 二分类是多分类的特例:可以认为二分类任务是多分类任务中类别数为2的情况。

  • 实现方法的共性

    • 大多数二分类算法(如逻辑回归、决策树等)可以直接扩展到多分类任务,通过调整输出类别数量或使用专门的多分类策略。
    • 神经网络模型通常需要调整输出层的神经元数量以适应多分类任务。
  • 实现方法的区别

    • 多分类任务需要处理多个类别之间的关系(如类别不平衡问题),而二分类任务不需要考虑这一点。
    • 在评估指标方面,多分类可能需要分别计算每个类别的性能,并综合这些结果。

实例:使用二分类和多分类评估和预测花的种类

案例背景

假设我们有一个数据集包含不同类型的花的特征,包括花瓣长度、花瓣宽度以及花萼长度和花萼宽度。目标是根据这些特征来预测花的种类。

由于有三种花的类型(Iris setosa, Iris versicolor, 和 Iris virginica),这是一个多分类任务。然而,我们可以将问题简化为二分类问题,例如预测是否属于 Iris virginica。

数据集描述
  • 样本数量:150个样本(50个每种花)
  • 特征变量
    • 花瓣长度 (Petal Length)
    • 花瓣宽度 (Petal Width)
    • 花萼长度 (Sepal Length)
    • 花萼宽度 (Sepal Width)
  • 目标变量:花的种类(Iris setosa, Iris versicolor, Iris virginica)

二分类:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing 

相关文章:

机器学习:二分类和多分类

1. 二分类(Binary Classification) 定义 二分类是指将输入样本分成两个互斥的类别。例如: 邮件 spam 或不是 spam。病人是有病或健康。物品是正品或假货。实现方法 二分类任务可以通过多种算法实现,包括: 逻辑回归(Logistic Regression):通过sigmoid函数将输出值映射…...

安科瑞光伏发电防逆流解决方案——守护电网安全,提升能源效率

安科瑞 华楠 18706163979 在当今大力发展清洁能源的时代背景下,光伏发电作为一种可持续的能源解决方案, 正得到越来越广泛的应用。然而,光伏发电过程中出现的逆流问题,给电网的安全稳定 运行带来了诸多挑战。若不能有效解决&…...

ml5.js框架实现AI图片识别

ml5.js ml5.js 提供了简单的接口来加载和使用机器学习模型,如图像分类、文本生成、姿态估计等,不需要深入理解底层的数学原理或复杂的编程技巧 ml5.js 构建在 TensorFlow.js 之上,提供了一系列预训练模型和简易的 API 接口 图片识别 先进行一…...

HDFS应用-后端存储cephfs-文件存储和对象存储数据双向迁移

DistCp(分布式拷贝)是用于大规模集群内部和集群之间拷贝的工具。 它使用Map/Reduce实现文件分发,错误处理和恢复,以及报告生成。 它把文件和目录的列表作为map任务的输入,每个任务会完成源列表中部分文件的拷贝 配置/…...

关于atomic 是否是线程安全的问题

在 Objective - C 里&#xff0c;atomic 特性并不能保证对象是完全线程安全的&#xff0c;下面从其基本原理、部分线程安全场景以及局限性来详细说明&#xff1a; 先看一个例子 #import <Foundation/Foundation.h>interface MyClass : NSObject property (atomic, assi…...

在实体机和wsl2中安装docker、使用GPU

正常使用docker和gpu&#xff0c;直接命令行安装dcoker和&#xff0c;nvidia-container-toolkit。区别在于&#xff0c;后者在于安装驱动已经cuda加速时存在系统上的差异。 1、安装gpu驱动 在实体机中&#xff0c;安装cuda加速包&#xff0c;我们直接安装 driver 和 cuda 即可…...

HTTP3.0:QUIC协议详解

文章目录 HTTP3.0:QUIC协议详解QUIC是什么QUIC为什么这么快**连接建立快&#xff1a;一见钟情型协议****拥抱UDP&#xff1a;轻装上阵****多路复用&#xff1a;一条路走到黑****更智能的丢包处理****内置加密****网络切换无压力****拥塞控制更智能** QUIC的应用场景QUIC未来会取…...

【EXCEL】【VBA】处理GI Log获得Surf格式的CONTOUR DATA

【EXCEL】【VBA】处理GI Log获得Surf格式的CONTOUR DATA data source1: BH coordination tabledata source2:BH layer tableprocess 1:Collect BH List To Layer Tableprocess 2:match Reduced Level from "Layer"+"BH"data source1: BH coordination…...

【数据处理】使用python收集网络数据--爬虫基础

我们经常需要获取大量的网络数据用于分析&#xff0c;靠人工获取效率太低&#xff0c;所以用代码获取成为大多数人的主要选择&#xff0c;这里简单介绍下使用python进行网络数据爬取的方法 数据获取 由于我们没有各个平台的内部数据和接口&#xff0c;要想获取数据只能从网页…...

代码随想录二叉树篇(含源码)

二叉树与递归 前言226.翻转二叉树算法思路及代码solution 1 用分解问题的思路来解决solution 2 用遍历的思路来解决 101.对称二叉树算法思路及代码solution 104.二叉树的最大深度算法思路及代码solution 1 遍历solution 2 分解问题 111.二叉树的最小深度算法思路及代码solution…...

网络安全检测思路

对于主机的安全检测&#xff0c;我们通常直接采用nmap或者类似软件进行扫描&#xff0c;然后针对主机操作系统及其 开放端口判断主机的安全程度&#xff0c;这当然是一种方法&#xff0c;但这种方法往往失之粗糙&#xff0c;我仔细考虑了一下&#xff0c;觉 得按下面的流程进行…...

ios通过xib创建控件

之前写过ios动态创建控件及添加事件&#xff0c;纯手工代码写控件&#xff0c;虽然比较灵活&#xff0c;但是就是代码量比较多。这次我们通过xib来创建app下载列表项 AppView.xib。一个imageview,一个label,一个button构成 1.创建AppView.xib 2.再创建xib对应的mode&#xff0…...

跟着李沐老师学习深度学习(八)

数值稳定性 模型初始化和激活函数 数值稳定性 神经网络的梯度 考虑如下d层的神经网络&#xff08;t代表层&#xff09; 计算损失 l 关于参数 Wt 的梯度&#xff1a; 这样的矩阵乘法带来的问题&#xff1a; &#xff08;1&#xff09;梯度爆炸 &#xff08;2&#xff09;梯度…...

元宵小花灯

吃完饭散步回来的路上&#xff0c;看到一个小朋友拿着元宵小灯&#xff0c;后面的家长也闲适的哼着歌。 想起前阵子看到说&#xff0c;大人爱看小孩玩&#xff0c;也是共享那份天真快乐吧。 我小时候每年的元宵节&#xff0c;也有自己的小灯&#xff0c;那是九几年&#xff0c…...

算法——搜索算法:原理、类型与实战应用

搜索算法&#xff1a;开启高效信息检索的钥匙 在信息爆炸的时代&#xff0c;搜索算法无疑是计算机科学领域中熠熠生辉的存在&#xff0c;它就像一把神奇的钥匙&#xff0c;为我们打开了高效信息检索的大门。无论是在日常生活中&#xff0c;还是在专业的工作场景里&#xff0c;…...

告别传统测量:三维扫描仪测量工件尺寸

在现代制造业中&#xff0c;精确测量工件尺寸是确保产品质量和生产效率的关键环节。然而&#xff0c;传统测量方法往往存在效率低下、精度不足以及操作复杂等问题&#xff0c;难以满足高精度和复杂形状工件的测量需求。 传统工件尺寸测量主要依赖于卡尺、千分尺、三坐标测量仪…...

win32汇编环境,对话框程序使用跟踪条(滑块)控件示例一

;运行效果 ;win32汇编环境,对话框程序使用跟踪条控件示例一 ;生成2条横的跟踪条,分别设置不同的数值范围,设置不同的进度副度的例子 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>…...

WordPress 角标插件:20 种渐变色彩搭配,打造专属菜单标识

源码介绍 WordPress 角标插件使用教程 本插件旨在为 WordPress 菜单添加角标&#xff0c;并且支持 20 种不同的角标样式。 使用步骤 您可以在 WordPress 后台的“插件”页面中&#xff0c;找到“WordPress 角标插件”&#xff0c;然后点击激活按钮。您需要进入主题的菜单设置…...

【鸿蒙开发】第二十九章 Stage模型-应用上下文Context、进程、线程

目录 1 Stage模型基本概念 1.1 开发流程 3 应用上下文Context的典型使用场景 3.1 获取应用文件路径 3.2 获取和修改加密分区 3.3 获取本应用中其他Module的Context 3.4 订阅进程内UIAbility生命周期变化 4 进程 4.1 概述 5 线程 5.1 线程类型 5.2 使用EventHub进行线…...

window 安装GitLab服务器笔记

目录 视频&#xff1a; 资源&#xff1a; Linux CeneOS7&#xff1a; VMware&#xff1a; Linux无法安装 yum install vim -y 1.手动创建目录 2.下载repo PS 补充视频不可复制的代码 安装GitLab *修改root用户密码相关&#xff08;我卡在第一步就直接放弃了这个操作&…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...