当前位置: 首页 > news >正文

【AI论文】10亿参数大语言模型能超越405亿参数大语言模型吗?重新思考测试时计算最优缩放

摘要:测试时缩放(Test-Time Scaling,TTS)是一种通过在推理阶段使用额外计算来提高大语言模型(LLMs)性能的重要方法。然而,目前的研究并未系统地分析策略模型、过程奖励模型(Process Reward Models,PRMs)以及问题难度如何影响TTS。这种分析的缺乏限制了人们对TTS方法的理解和实际应用。在本文中,我们聚焦于两个核心问题:(1)在不同策略模型、PRMs和问题难度水平下,扩展测试时计算的最优方法是什么?(2)通过增加计算,能在多大程度上提高LLMs在复杂任务上的性能,以及通过这种方法,较小的语言模型能否超越较大的语言模型?通过在MATH-500和具有挑战性的AIME24任务上进行全面实验,我们得出了以下观察结果:(1)计算最优的TTS策略高度依赖于策略模型、PRM和问题难度的选择。(2)采用我们的计算最优TTS策略,极小的策略模型可以超越较大的模型。例如,在MATH-500上,一个10亿参数的大语言模型可以超越一个405亿参数的大语言模型。此外,在MATH-500和AIME24上,一个5亿参数的大语言模型优于GPT-4o,一个30亿参数的大语言模型超越了405亿参数的大语言模型,而一个70亿参数的大语言模型则击败了o1和DeepSeek-R1,同时具有更高的推理效率。这些发现表明,根据每个任务和模型的具体特征调整TTS策略具有重要意义,并指出TTS是增强LLMs推理能力的一种有前景的方法。Huggingface链接:Paper page,论文链接:2502.06703

10亿参数大语言模型能超越405亿参数大语言模型吗?重新思考测试时计算最优缩放

引言

随着大语言模型(LLMs)在各个领域的显著进步,如何提高其性能成为了研究热点。测试时缩放(Test-Time Scaling,TTS)作为一种通过在推理阶段使用额外计算来提高LLMs性能的方法,逐渐受到关注。然而,当前的研究并未系统地分析策略模型、过程奖励模型(Process Reward Models,PRMs)以及问题难度如何影响TTS,这限制了人们对TTS方法的理解和实际应用。本文旨在填补这一空白,通过全面实验探讨TTS的最优策略,并评估其在提高LLMs复杂任务性能方面的潜力。

测试时缩放(TTS)概述

TTS方法主要分为两大类:内部TTS和外部TTS。内部TTS通过训练LLMs以“慢速”思考的方式生成长链式思维(Chain-of-Thought,CoT),从而提高推理能力。而外部TTS则通过采样或基于搜索的方法,在固定LLMs的基础上提高推理性能。外部TTS的关键挑战在于如何最优地分配计算资源,即为每个问题分配最佳的计算量。

在外部TTS中,过程奖励模型(PRMs)起着至关重要的作用。PRMs通过为LLMs生成的每个步骤分配奖励,指导生成过程并选择最终答案。然而,当前的研究缺乏对PRMs、策略模型和问题难度如何共同影响TTS效果的深入分析。

研究问题与贡献

本文聚焦于两个核心问题:

  1. 在不同策略模型、PRMs和问题难度水平下,扩展测试时计算的最优方法是什么?
  2. 通过增加计算,能在多大程度上提高LLMs在复杂任务上的性能,以及通过这种方法,较小的语言模型能否超越较大的语言模型?

针对上述问题,本文通过在MATH-500和具有挑战性的AIME24任务上进行全面实验,得出了以下主要贡献:

  • 系统地评估了不同TTS方法在不同策略模型、PRMs和缩放方法下的性能。
  • 强调了TTS过程中奖励信息的重要性,并提出了奖励感知的计算最优TTS策略。
  • 展示了通过计算最优TTS策略,较小的语言模型可以在复杂任务上超越较大的语言模型。

实验设置与方法

数据集

本文在MATH-500和AIME24两个数据集上进行了实验。MATH-500包含500个具有代表性的数学问题,这些问题选自MATH测试集的难题部分。AIME24则是一个更具挑战性的数据集,包含了一系列需要高级数学推理能力的问题。

策略模型与PRMs

实验使用了来自Llama 3和Qwen 2.5系列的策略模型,这些模型的参数规模从0.5B到72B不等。同时,评估了多种开源PRMs,包括Math-Shepherd、RLHFlow系列、Skywork系列和Qwen2.5-Math系列。这些PRMs的参数规模从1.5B到72B不等,为实验提供了丰富的选择。

TTS方法

本文考虑了三种主要的TTS方法:Best-of-N(BoN)、Beam Search和Diverse Verifier Tree Search(DVTS)。这些方法在生成过程中采用不同的策略来选择最终答案,从而评估TTS策略的有效性。

实验结果与分析

TTS性能与策略模型、PRMs的关系

实验结果表明,TTS性能高度依赖于策略模型、PRM和问题难度的选择。对于不同的策略模型,最优的TTS方法各不相同。例如,对于较小的策略模型,搜索基方法(如Beam Search和DVTS)通常优于BoN方法;而对于较大的策略模型,BoN方法则表现出更好的性能。

此外,PRMs的泛化能力对TTS性能有显著影响。当PRMs与策略模型不匹配时(即PRMs是在不同的策略模型上训练的),TTS性能会显著下降。这表明,在实际应用中,为每个策略模型单独训练PRM可能是必要的,但这会增加计算成本。

TTS性能与问题难度的关系

实验还探讨了问题难度对TTS性能的影响。通过将问题难度分为易、中、难三个级别,本文发现对于不同难度的问题,最优的TTS方法也不同。对于较小规模的策略模型,BoN方法在简单问题上表现较好,而Beam Search方法在复杂问题上表现更佳。对于中等规模的策略模型,DVTS方法在简单和中等难度问题上表现出色,而Beam Search方法则更适合解决复杂问题。

小模型超越大模型的潜力

通过采用计算最优的TTS策略,本文展示了极小的策略模型(如1B LLM)可以在复杂任务上超越较大的模型(如405B LLM)。在MATH-500和AIME24任务上,0.5B LLM和3B LLM分别超越了GPT-4o和405B LLM,同时保持了较高的推理效率。这些发现表明,通过精心设计的TTS策略,较小的语言模型可以在资源有限的情况下实现卓越的性能。

TTS与长CoT方法的比较

本文还比较了TTS与长CoT方法在复杂任务上的性能。实验结果表明,虽然长CoT方法在一定程度上提高了LLMs的推理能力,但TTS方法在多数情况下表现更优。特别是在处理复杂问题时,TTS方法能够更有效地利用计算资源,提高推理效率和准确性。

讨论与未来工作

奖励感知的TTS策略

本文提出了奖励感知的计算最优TTS策略,该策略强调了在TTS过程中考虑奖励信息的重要性。未来的工作可以进一步探索如何更好地集成奖励信息到TTS策略中,以提高其性能和泛化能力。

PRMs的改进

尽管PRMs在TTS中起着关键作用,但当前的研究表明PRMs在泛化能力和对特定响应长度的偏好方面存在局限性。未来的工作可以致力于开发更强大、更通用的PRMs,以提高TTS的整体性能。

扩展到更多任务

本文的实验主要集中在数学推理任务上。未来的工作可以探索将TTS方法扩展到更多类型的任务上,如自然语言理解、代码生成等,以评估其普适性和有效性。

计算最优TTS策略的优化

当前的研究主要依赖于实验来探索计算最优的TTS策略。未来的工作可以探索更系统化的方法来优化TTS策略,如基于强化学习或贝叶斯优化等方法。

结论

本文通过全面实验评估了不同TTS方法在不同策略模型、PRMs和问题难度下的性能,并提出了奖励感知的计算最优TTS策略。实验结果表明,通过精心设计的TTS策略,较小的语言模型可以在复杂任务上超越较大的语言模型。这些发现不仅加深了对TTS方法的理解,还为未来LLMs性能的提升提供了新的思路和方法。同时,本文也指出了当前TTS研究中的局限性,并提出了未来的研究方向和挑战。

相关文章:

【AI论文】10亿参数大语言模型能超越405亿参数大语言模型吗?重新思考测试时计算最优缩放

摘要:测试时缩放(Test-Time Scaling,TTS)是一种通过在推理阶段使用额外计算来提高大语言模型(LLMs)性能的重要方法。然而,目前的研究并未系统地分析策略模型、过程奖励模型(Process …...

【设计模式】【行为型模式】状态模式(State)

👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 📫 欢迎V: flzjcsg2,我们共同讨论Java深渊的奥秘 &#x1f…...

PostgreSQL错误: 编码“UTF8“的字符0x0xe9 0x94 0x99在编码“WIN1252“没有相对应值

错误介绍 今天遇到一个错误,记录一下 2025-02-10 17:04:35.264 HKT [28816] 错误: 编码"WIN1252"的字符0x0x81在编码"UTF8"没有相对应值 2025-02-10 17:04:35.264 HKT [28816] 错误: 编码"UTF8"的字符0x0xe9 0x94 0x99在编码&quo…...

Mac ARM 架构的命令行(终端)中,删除整行的快捷键是:Ctrl + U

在 Mac ARM 架构的命令行(终端)中,删除整行的快捷键是: Ctrl U这个快捷键会删除光标所在位置到行首之间的所有内容。如果你想删除光标后面的所有内容,可以使用: Ctrl K这两个快捷键可以帮助你快速清除当…...

Vue2下判断有新消息来时以站内信方式在页面右下角弹出

以下是完整的Vue2全局通知组件实现方案&#xff0c;包含自动挂载和全局调用方法&#xff1a; 第一步&#xff1a;创建通知组件 <!-- src/components/Notification/index.vue --> <template><div class"notification-container"><transition-g…...

AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘

云边有个稻草人-CSDN博客 目录 第一章&#xff1a;DeepSeek与ChatGPT的基础概述 1.1 DeepSeek简介 1.2 ChatGPT简介 第二章&#xff1a;模型架构对比 2.1 Transformer架构&#xff1a;核心相似性 2.2 模型规模与参数 第三章&#xff1a;训练方法与技术 3.1 预训练与微调…...

网络安全中的account和audit区别

一、AWD介绍 AWD&#xff1a;Attack With Defence&#xff0c;即攻防对抗&#xff0c;比赛中每个队伍维护多台服务器&#xff08;一般两三台&#xff0c;视小组参赛人数而定&#xff09;&#xff0c;服务器中存在多个漏洞&#xff08;web层、系统层、中间件层等&#xff09;&a…...

Visual Studio 使用 “Ctrl + /”键设置注释和取消注释

问题&#xff1a;在默认的Visual Studio中&#xff0c;选择单行代码后&#xff0c;按下Ctrl /键会将代码注释掉&#xff0c;但再次按下Ctrl /键时&#xff0c;会进行双重注释&#xff0c;这不是我们想要的。 实现效果&#xff1a;当按下Ctrl /键会将代码注释掉&#xff0c;…...

【密评】 | 商用密码应用安全性评估从业人员考核题库(23)

在GM/T0048《智能密码钥匙密码检测规范》中,产品的对称算法性能应满足哪个标准中的要求()。 A.GM/T 0016《智能密码钥匙密码应用接口规范》 B.GM/T 0017《智能密码钥匙密码应用接口数据格式规范》 C.GM/T 0027《智能密码钥匙技术规范》 D.GM/T 0028《密码模块安全技术要求》…...

【MySQL】幻读 案例分析

目录 假设1&#xff1a;只在 id5 这一行加锁&#xff0c;其他行不加锁&#xff1f; 幻读的定义 幻读的场景 假设1 产生的问题&#xff1a;语义被破坏 假设1 产生的问题&#xff1a;数据一致性 结论&#xff1a; 假设1不成立 假设2&#xff1a;扫描过程中每一行都加上写锁…...

10bit VS 8bit 视频:色彩深度的较量,谁才是视觉盛宴的王者?

10bit 和 8bit 视频 10bit 视频和 8bit 视频的主要区别在于色彩深度和细节表现能力。10bit 视频具有更高的色彩深度和更丰富的细节表现,能够提供更平滑的色彩过渡和更真实的图像质量,但需要更多的存储空间和带宽。8bit 视频则在存储和传输方面更加高效,适合于对存储空间和带…...

讲解下MySql的外连接查询在SpringBoot中的使用情况

在Spring Boot中使用MySQL的外连接查询时&#xff0c;通常通过JPA、MyBatis或JDBC等持久层框架来实现。外连接查询主要用于从多个表中获取数据&#xff0c;即使某些表中没有匹配的记录。外连接分为左外连接&#xff08;LEFT JOIN&#xff09;、右外连接&#xff08;RIGHT JOIN&…...

蓝桥杯试题:归并排序

一、问题描述 在一个神秘的岛屿上&#xff0c;有一支探险队发现了一批宝藏&#xff0c;这批宝藏是以整数数组的形式存在的。每个宝藏上都标有一个数字&#xff0c;代表了其珍贵程度。然而&#xff0c;由于某种神奇的力量&#xff0c;这批宝藏的顺序被打乱了&#xff0c;探险队…...

物联网(IoT)如何与人工智能(AI)的结合

物联网&#xff08;IoT&#xff09;与人工智能&#xff08;AI&#xff09;的结合是当前技术发展的重要趋势&#xff0c;通常被称为 AIoT&#xff08;人工智能物联网&#xff09;。这种结合通过将AI的计算能力和数据分析能力与物联网的海量设备连接能力相结合&#xff0c;实现了…...

一致性Hash算法延伸至Redis分片扩容使Lua脚本失效如何解决

文章部分内容来源&#xff1a;小林coding 问题场景&#xff1a;我们需要用Lua脚本&#xff0c;并且这个Lua脚本需要用到两个Key&#xff0c;但这两个Key必须命中同一台机器才可以&#xff0c;不然Lua脚本就会执行失败。如果集群扩容可能会导致两个Key落到不同的节点上导致Lua脚…...

Idea 插件 Quickly-Code-Toolkit

使用说明 &#xff08;一&#xff09;全局设置 Paging Wrapper Setting&#xff08;分页设置&#xff09; 功能&#xff1a;主要用于在方法写入时&#xff0c;为返回参数提供分页包装类。设置方式&#xff1a;需准确填写分页包装类的全限定名&#xff0c;例如&#xff1a;com…...

先进制造aps专题二十九 基于ai智能体的生产排程和工厂生产仿真引擎的设计

上文中&#xff0c;我们说&#xff0c;通常的做法是&#xff0c;可以先通过排产仿真引擎产生生产计划&#xff0c;再在工厂仿真引擎里仿真执行&#xff0c;这样可以预先分析计划和执行的差异情况并进行调整优化 这里的产生生产计划&#xff0c;仿真生产执行和数据分析都是人工…...

【Cocos TypeScript 零基础 15.1】

目录 见缝插针UI脚本针脚本球脚本心得_旋转心得_更改父节点心得_缓动动画成品展示图 见缝插针 本人只是看了老师的大纲,中途不明白不会的时候再去看的视频 所以代码可能与老师代码有出入 SIKI_学院_点击跳转 UI脚本 import { _decorator, Camera, color, Component, directo…...

利用邮件合并将Excel的信息转为Word(单个测试用例转Word)

利用邮件合并将Excel的信息转为Word 效果一览效果前效果后 场景及问题解决方案 一、准备工作准备Excel数据源准备Word模板 二、邮件合并操作步骤连接Excel数据源插入合并域预览并生成合并文档 效果一览 效果前 效果后 场景及问题 在执行项目时的验收阶段&#xff0c;对于测试…...

尚硅谷课程【笔记】——大数据之Hadoop【一】

课程视频链接&#xff1a;尚硅谷Hadoop2.x框架入门 一、大数据概论 1&#xff09;大数据概念 大数据&#xff08;Big Data&#xff09;&#xff1a;指无法再一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合&#xff0c;是需要新处理模式才能具有更强的决策力、洞…...

DAY43打卡

浙大疏锦行 kaggle找到一个图像数据集&#xff0c;用cnn网络进行训练并且用grad-cam做可视化 进阶&#xff1a;并拆分成多个文件 fruit_cnn_project/ ├─ data/ # 存放数据集&#xff08;需手动创建&#xff0c;后续放入图片&#xff09; │ ├─ train/ …...

mysql+keepalived

文章目录 一、master1创建目录写入配置文件启动master1创建 `slave` 用户并授权获取主节点当前 `binary log` 文件名和位置position二、master2创建目录写入配置文件启动master2创建 `slave` 用户并授权获取主节点当前 `binary log` 文件名和位置position三、配置主主复制Maste…...

Unity3D仿星露谷物语开发60之定制角色其他部位

1、目标 上一篇中定制了角色的衬衫、手臂。 本篇中将定制角色其他部位的图形&#xff0c;包括&#xff1a;裤子、发型、皮肤、帽子等。 2、定制裤子 &#xff08;1&#xff09;修改ApplyCharacterCustomisation.cs脚本 我们需要设置一个输入框选择裤子的颜色。 // Select …...

VBA清空数据

列数转字母 Function CNtoW(ByVal num As Long) As String CNtoW Replace(Cells(1, num).Address(False, False), "1", "") End Function 字母转列数 Function CWtoN(ByVal AB As String) As Long CWtoN Range("a1:" & AB & &…...

CICD实战(一) -----Jenkins的下载与安装

服务器IPJenkins192.168.242.153gitlab192.168.242.154 1、安装工具&#xff08;可选&#xff0c;如果有就不需要安装&#xff09; sudo yum install wget net-tools 2、关闭防火墙 #关闭防火墙(如果是云服务器部署,去安全组放通对应的端口即可) systemctl stop firewalld …...

USB扩展器与USB服务器的2个主要区别

在现代办公和IT环境中&#xff0c;连接和管理USB设备是常见需求。USB扩展器&#xff08;常称USB集线器&#xff09;与USB服务器&#xff08;如朝天椒USB服务器&#xff09;是两类功能定位截然不同的解决方案。前者主要解决物理接口数量不足的“近身”连接扩展问题&#xff0c;而…...

怎么通过 jvmti 去 hook java 层函数

使用 JVMTI 手动实现 Android Java 函数 Hook 要通过 JVMTI 手动实现 Android Java 函数 Hook&#xff0c;需要编写 Native 层代码并注入到目标进程中。以下是详细步骤和示例&#xff1a; 一、核心实现原理 JVMTI 提供两种主要 Hook 方式&#xff1a; Method Entry/Exit 事…...

PHP的namespace

文章目录 环境Java的packagepackage关键字包结构和目录结构访问权限import关键字总结 PHP的namespacenamespace关键字在同一个文件里使用资源限定&#xff0c;完全限定&#xff0c;非限定限定完全限定非限定 use关键字use VS 直接指定资源在不同的文件里使用总结 环境 Windows…...

《仿盒马》app开发技术分享-- 商品搜索页(顶部搜索bar热门搜索)(端云一体)

开发准备 随着开发功能的逐渐深入&#xff0c;我们的应用逐渐趋于完善&#xff0c;现在我们需要继续在首页给没有使用按钮以及组件添加对应的功能&#xff0c;这一节我们要实现的功能是商品搜索页面&#xff0c;这个页面我们从上到下开始实现功能&#xff0c;首先就是一个搜索…...

从零开始的云计算——番外实战,iptables防火墙项目

目录 一网络规划 二项目要求 三环境准备 1防火墙设置 2PC1设置 3PC2设置 4服务器S1设置 四环境检测 1内网链接 2外网连接 五防火墙配置及测试 1内部网络中的pc1采用SNAT访问外部互联网&#xff0c;但是无法ping到内部网关。 ​编辑​编辑 2内部网络服务器s1通过DN…...