当前位置: 首页 > news >正文

【漫话机器学习系列】091.置信区间(Confidence Intervals)

置信区间(Confidence Intervals)详解

1. 引言

在统计学和数据分析中,我们通常希望通过样本数据来估计总体参数。然而,由于抽样的随机性,我们不可能得到精确的总体参数,而只能通过估计值(如均值、回归系数)来进行推断。置信区间(Confidence Interval, CI)提供了一种方法来衡量估计的不确定性,它告诉我们:在一定的置信水平下,真实参数值可能落在某个范围内

本文将详细介绍置信区间的概念、数学公式、计算方法以及实际应用,并结合图示的内容进行解释。


2. 置信区间的定义

2.1 什么是置信区间?

置信区间是对总体参数(如均值或回归系数)的区间估计,它提供了一个范围,使得该范围内包含真实参数的概率达到某个置信水平(confidence level)。

例如,95% 置信区间意味着:

  • 如果我们重复进行相同的实验 100 次,每次计算一个新的置信区间,
  • 那么这 100 个置信区间中,大约有 95 个 会包含真实的总体参数值。

这并不意味着某个具体的置信区间一定有 95% 的概率包含真实参数,而是指在大量重复实验下的长期频率解释。

2.2 置信区间的数学表达

对于某个参数(如回归系数 \beta_1),其估计值 \hat{\beta_1} 具有标准误差(Standard Error, SE)。在正态分布假设下,95% 置信区间的计算公式如下:

\hat{\beta_1} \pm 2 \times SE(\hat{\beta_1})

其中:

  • \hat{\beta_1}​:参数的估计值(例如回归系数)。
  • SE(\hat{\beta_1}):参数估计值的标准误差,衡量估计的不确定性。
  • 2:近似于 95% 置信区间的标准正态分布临界值(更精确的值是 1.96,但通常简化为 2)。

解释

  • 标准误差(SE)越大,置信区间越宽,意味着估计值的不确定性更高。
  • 样本量增大,SE 变小,置信区间变窄,意味着我们对参数的估计更精确。

3. 置信区间的计算方法

3.1 计算标准误差

标准误差(SE)通常基于方差 Var(e) 计算,其中误差方差的公式如下:

Var(e) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}

其中:

  • x_i 是样本数据点,
  • bar{x} 是样本均值,
  • n 是样本数量。

标准误差的计算方式取决于所估计的参数类型,例如:

  • 对于均值的置信区间:

    SE = \frac{\sigma}{\sqrt{n}}

    其中 σ 是总体标准差,n 是样本大小。

  • 对于回归系数的置信区间:

    SE(\hat{\beta}) = \sqrt{\frac{Var(e)}{\sum (x_i - \bar{x})^2}}

    该公式与回归模型的残差方差相关。


4. 置信区间的直观理解

4.1 误差与置信区间

从图示可以看出:

  • 置信区间的宽度受标准误差的影响,标准误差较大时,区间较宽,表示估计的不确定性较高。
  • 误差方差(Var(e))决定了 SE 的大小,误差越大,SE 也越大,最终导致置信区间更宽。

4.2 置信水平

  • 95% 置信区间(CI) 对应于标准正态分布中的 1.96 标准差(常近似为 2)。
  • 99% 置信区间 更宽,需要乘以 2.576
  • 90% 置信区间 更窄,仅需乘以 1.645

置信水平越高,置信区间越宽,因为我们希望更大概率包含真实值。


5. 置信区间的应用

5.1 统计推断

  • 均值估计:如调查全国学生的平均数学成绩,通过置信区间估计真实均值范围。
  • 回归分析:在回归模型中,我们可以计算回归系数的置信区间,衡量其不确定性。

5.2 机器学习与数据科学

  • 模型评估:在 A/B 测试中,使用置信区间来判断不同实验组之间的均值差异是否显著。
  • 误差范围:在预测分析中,可以用置信区间估计预测值的误差范围。

5.3 医学研究

  • 药物试验:计算药物疗效的置信区间,以评估治疗效果是否显著。
  • 流行病学:分析某种疾病的发生率,提供统计置信区间。

6. 结论

置信区间是一种非常重要的统计推断工具,它提供了参数估计的不确定性范围,使得研究者可以更有信心地推断总体信息。主要特点包括:

  • 置信区间不是单一的点估计,而是一个区间,使得估计更可靠。
  • 置信水平决定了置信区间的宽度,95% 是最常用的标准。
  • 置信区间广泛应用于统计分析、回归模型、实验数据分析和医学研究等领域。

掌握置信区间的计算和解释,不仅可以帮助我们更好地理解统计推断,还可以提高我们在数据分析中的决策能力。

相关文章:

【漫话机器学习系列】091.置信区间(Confidence Intervals)

置信区间(Confidence Intervals)详解 1. 引言 在统计学和数据分析中,我们通常希望通过样本数据来估计总体参数。然而,由于抽样的随机性,我们不可能得到精确的总体参数,而只能通过估计值(如均值…...

UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x99

UnicodeDecodeError: ‘gbk’ codec can’t decode byte 0x99 这个错误通常发生在你尝试使用 GBK 编码来解码一个包含非GBK编码字符的文件时。GBK 是一种用于简体中文的字符编码方式,它不支持所有可能的 Unicode 字符。 解决方法 明确文件的正确编码:首…...

DeepSeek应用——与word的配套使用

目录 一、效果展示 二、配置方法 三、使用方法 四、注意事项 1、永久化使用 2、宏被禁用 3、office的生成失败 记录自己学习应用DeepSeek的过程...... 这个是与WPS配套使用的过程,office的与这个类似: 一、效果展示 二、配置方法 1、在最上方的…...

递归乘法算法

文章目录 递归乘法题目链接题目详解解题思路:代码实现: 结语 欢迎大家阅读我的博客,给生活加点impetus!! 让我们进入《题海探骊》,感受算法之美!! 递归乘法 题目链接 在线OJ 题目…...

【免费】2004-2020年各省废气中废气中二氧化硫排放量数据

2004-2020年各省废气中废气中二氧化硫排放量数据 1、时间:2004-2020年 2、来源:国家统计局、统计年鉴 3、指标:行政区划代码、地区、年份、废气中二氧化硫排放量(万吨) 4、范围:31省 5、指标说明:二氧化硫排放量指…...

CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测

代码地址:CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测 CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测 一、引言 1、研究背景和意义 光伏发电作为可再生能源的重要组成部分,近…...

【油猴脚本/Tampermonkey】DeepSeek 服务器繁忙无限重试(20250213优化)

目录 一、 引言 二、 逻辑 三、 源代码 四、 添加新脚本 五、 使用 六、 BUG 七、 优化日志 1.获取最后消息内容报错 一、 引言 deepseek每次第一次提问就正常,后面就开始繁忙了,有一点阴招全使我们身上。 greasyfork登不上,不知道…...

单调栈及相关题解

单调递增栈:栈中数据入栈单调递增序列(栈底到栈顶是单调递增); 单调递减栈:栈中数据入栈单调递减序列(栈底到栈顶是单调递减)。 单调递增栈: 维护单调递增栈:遍历数组中每一个元素,执行入栈:每次入栈前先…...

每日温度问题:如何高效解决?

给定一个整数数组 temperatures,表示每天的温度,要求返回一个数组 answer,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。 问题分析 我们需要计算…...

#渗透测试#批量漏洞挖掘#致远互联AnalyticsCloud 分析云 任意文件读取

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…...

统计安卓帧率和内存

using System; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI; public class AnalysisTool : MonoBehaviour { private void Awake() { DontDestroyOnLoad(gameObject); } public Text mmText; // 用于显示FPS的UI …...

大数据学习之PB级百战出行网约车二

21.订单监控_Redis工具类 package com . itbaizhan . utils ; import redis . clients . jedis . Jedis ; import redis . clients . jedis . JedisPool ; import redis . clients . jedis . JedisPoolConfig ; /** * 操作 redis 数据库 62 */ public class Redis…...

C语言第18节:自定义类型——联合和枚举

1. 联合体 C语言中的联合体(Union)是一种数据结构,它允许在同一内存位置存储不同类型的数据。不同于结构体(struct),结构体的成员各自占有独立的内存空间,而联合体的所有成员共享同一块内存区域…...

C++病毒(^_^|)(2)

第二期 声明&#xff1a; 仅供损害电脑&#xff0c;不得用于非法。损坏电脑&#xff0c;作者一律不负责。此作为作者原创&#xff0c;转载请经过同意。 直接上代码 #include <bits/stdc.h> #include <windows.h> using namespace std; HHOOK g_hHook;void lrud(…...

在vscode中拉取gitee里的项目并运行

拉取项目: 方法一:vscode点击查看--->终端(或者直接通过快捷键ctrol+ `打开) 在终端内通过cd命令定位到你想存放项目的文件夹 例如:cd h: 通过命令:git clone 地址 例如:git clone newbee-mall-vue-app: 前端代码 等待拉取完成即可在对应文件夹下看到项目啦 方…...

centos7 防火墙开放指定端口

在 CentOS 7 中&#xff0c;默认的防火墙管理工具是 firewalld。如果你想开放一个特定的端口&#xff0c;以便允许外部访问&#xff0c;可以通过以下步骤实现&#xff1a; 安装 firewalld 如果你的系统上还没有安装 firewalld&#xff0c;你可以通过以下命令安装&#xff1a; …...

Day42(补)【AI思考】-编译过程中语法分析及递归子程序分析法的系统性解析

文章目录 编译过程中语法分析及递归子程序分析法的系统性解析**一、总览&#xff1a;编译流程中的语法分析****1. 编译过程核心步骤** **二、语法分析的核心任务****1. 核心目标****2. 现实类比** **三、递归子程序分析法的本质****1. 方法分类****2. 递归子程序分析法的运作原…...

AI成为基础设施有哪些研究方向:模型的性能、可解释性,算法偏见

AI成为基础设施有哪些研究方向 模型的性能、可解释性和降低训练成本 伦理问题:算法偏见、数据隐私保护、人工智能的权利和责任 数据使用问题:公开数据已经使用完了,未来使用隐私数据(专家) 当AI成为基础设施后,研究方向将更加多元化和深入,涵盖技术创新、应用拓展、…...

写一个鼠标拖尾特效

思路和逻辑 要实现鼠标拖尾特效&#xff0c;我们需要&#xff1a; 监听鼠标移动事件&#xff0c;获取鼠标的当前位置。在每次鼠标移动时&#xff0c;绘制一个小圆点或其他形状在鼠标的当前位置。将所有绘制的圆点连接起来&#xff0c;形成一条“尾巴”。使用动画效果让尾巴看…...

Redisson介绍和入门使用

一、什么是Redisson&#xff1f; Redisson是一个在Redis的基础上实现的Java驻内存数据网格&#xff08;In-Memory Data Grid&#xff09;。它不仅提供了一系列的分布式的Java常用对象&#xff0c;还提供了许多分布式服务&#xff0c;其中就包含了各种分布式锁的实现。 官网地址…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...