当前位置: 首页 > news >正文

第J7周:对于ResNeXt-50算法的思考

目录

  • FROM
    • 思考

FROM

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考
📌打卡要求:请查找相关资料、逐步推理模型、详细写下你的思考过程

# 定义残差单元  
def block(x, filters, strides=1, groups=32, conv_shortcut=True):  if conv_shortcut:  shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)  # epsilon为BN公式中防止分母为零的值  shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)  else:  # identity_shortcut  shortcut = x  # 三层卷积层  x = Conv2D(filters=filters, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  x = BatchNormalization(epsilon=1.001e-5)(x)  x = ReLU()(x)  # 计算每组的通道数  g_channels = int(filters / groups)  # 进行分组卷积  x = grouped_convolution_block(x, strides, groups, g_channels)  x = Conv2D(filters=filters * 2, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)  x = BatchNormalization(epsilon=1.001e-5)(x)  x = Add()([x, shortcut])  x = ReLU()(x)  return x

如果conv_shortcut=False,那么执行“x=Add()…”语句时,通道数不一致的,为什么不会报错呢?

思考

代码功能分析

这段代码定义了一个残差单元(Residual Block),是深度学习中常见的结构,通常用于构建残差网络(ResNet)。代码的主要逻辑如下:

  1. 定义快捷连接(Shortcut):
  • 如果 conv_shortcut=True,则通过一个 1x1 卷积调整输入张量的通道数和空间尺寸,使其与输出张量匹配。
  • 如果 conv_shortcut=False,则直接将输入张量 x 作为快捷连接。
  1. 主路径(Main Path):
  • 先通过一个 1x1 卷积调整通道数。
  • 然后执行分组卷积(grouped_convolution_block,代码中未给出其定义)。
  • 最后通过一个 1x1 卷积调整通道数。
  1. 残差连接(Residual Connection):
  • 将主路径的输出与快捷连接相加。
  • 应用 ReLU 激活函数。

问题分析
conv_shortcut=False 时,快捷连接直接使用输入张量 x,而主路径的输出张量可能与输入张量的通道数不一致。然而,代码中并没有显式检查通道数是否匹配,那么为什么不会报错呢?
深度学习框架的张量操作规则
在深度学习框架(如TensorFlow/Keras)中,张量操作(如加法)要求输入张量的形状(shape)必须一致。如果形状不一致,通常会报错。例如,在 TensorFlow 中,尝试对形状不匹配的张量进行加法操作会抛出 InvalidArgumentError
代码中可能的原因

  1. 框架的隐式广播(Broadcasting):
  • 在某些情况下,框架可能会尝试通过广播机制来匹配张量形状。然而,广播机制通常要求张量在某些维度上可以扩展,而不是完全不匹配。例如,一个形状为 (batch_size, H, W, 1) 的张量可以与形状为 (batch_size, H, W, C) 的张量进行加法操作,但前提是 C 必须为 1。
  • 如果输入张量 x 和主路径输出的通道数完全不一致(例如,输入通道数为 64,输出通道数为 128),广播机制无法生效,因此会报错。
  1. 代码逻辑的隐含假设:
  • 代码可能隐含地假设输入张量 x 的通道数和主路径输出的通道数一致。在这种情况下,代码不会报错,但这种假设可能并不总是成立。
  • 如果 conv_shortcut=False,则代码的正确性完全依赖于输入张量的通道数是否与主路径输出的通道数一致。
  1. grouped_convolution_block 的作用:
  • 代码中调用了 grouped_convolution_block 函数,但未给出其定义。如果该函数内部对输入张量的通道数进行了某种调整,可能会导致主路径输出的通道数与输入张量不一致。
  • 如果 grouped_convolution_block 的输出通道数与输入通道数不一致,那么当 conv_shortcut=False 时,代码会报错。
    结论
    从代码的逻辑来看,当 conv_shortcut=False 时,确实存在通道数不一致的风险。如果输入张量的通道数与主路径输出的通道数不一致,代码在执行Add()操作时会报错。因此,代码存在潜在问题。
    修复建议
    为了避免潜在的错误,建议在代码中显式检查通道数是否匹配。如果通道数不一致,应通过 1x1 卷积调整通道数,即使 conv_shortcut=False。例如:
if conv_shortcut or x.shape[-1] != filters * 2:shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)
else:shortcut = x

通过这种方式,可以确保在任何情况下,快捷连接的通道数与主路径输出的通道数一致,从而避免潜在的错误。

相关文章:

第J7周:对于ResNeXt-50算法的思考

目录 FROM思考 FROM 🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考 📌打卡要求&#xff1a…...

【第2章:神经网络基础与实现——2.3 多层感知机(MLP)的构建与调优技巧】

在当今科技飞速发展的时代,人工智能早已不是一个陌生的词汇,它已经渗透到我们生活的方方面面,从智能语音助手到自动驾驶汽车,从图像识别到自然语言处理。而支撑这一切的核心技术之一,就是神经网络。作为机器学习领域的璀璨明星,神经网络已经在众多任务中取得了令人瞩目的…...

【Elasticsearch】keyword分析器

Elasticsearch 中的keyword分析器是一种非常特殊的分析器,它的行为与其他常见的分析器(如standard、whitespace等)截然不同。keyword分析器的核心功能是将整个输入字符串作为一个单一的标记(token)返回,而不…...

重生之我在异世界学编程之C语言:深入预处理篇(上)目录)

大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文一、预处理的作用与流程&#xf…...

MySQL数据库误删恢复_mysql 数据 误删

2、BigLog日志相关 2.1、检查biglog状态是否开启 声明: 当前为mysql版本5.7 当前为mysql版本5.7****当前为mysql版本5.7 2.1.1、Navicat工具执行 SHOW VARIABLES LIKE LOG_BIN%;OFF 是未开启状态,如果不是ON 开启状态需要开启为ON。{默认情况下就是关闭状态} 2.…...

SpringAI集成DeepSeek实战

SpringAI集成DeepSeek实战教程 引言 Spring AI作为Spring生态系统中的新成员,为开发者提供了便捷的AI集成方案。本文将详细介绍如何在Spring项目中集成DeepSeek模型,实现智能对话等功能。 环境准备 在开始之前,请确保您的开发环境满足以下要…...

解决 THC/THC.h: No such file or directory 报错

报错现象: cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C In file included from /data/joyiot/liyong/codes/graspnet-baseline/knn/src/knn.h:5:0,from /data/joyiot/liyong/codes/graspnet-baseline/knn/s…...

S4D480 S4HANA 基于PDF的表单打印

2022年元旦的笔记草稿 SAP的表单打印从最早的SAPScripts 到后来的SMARTFORM,步入S4时代后由于Fiori的逐渐普及,更适应Web的Adobe Form成了SAP主流output文件格式。 目录 一、 基于PDF表单打印系统架构Interface 接口Form 表单ContextLayout 二、表单接…...

数组_移除元素

数组_移除元素 一、leetcode-27二、题解1.代码2.思考 一、leetcode-27 移除元素 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数…...

Vue2/Vue3分别如何使用Watch

在 Vue 2 和 Vue 3 中,watch 用于监听数据的变化并执行相应的逻辑。虽然两者的核心功能相同,但在语法和使用方式上有一些区别。以下是 Vue 2 和 Vue 3 中使用 watch 的详细说明: Vue 2 中的 watch 在 Vue 2 中,watch 是通过选项式…...

C++从入门到实战(四)C++引用与inline,nullptr

C从入门到实战(四)C引用与inline,nullptr 前言一、C 引用(一)什么是引用(二)引用的特点(三)引用作为函数参数(四)引用作为函数返回值(…...

Linux库制作与原理:【静态库】【动态库】【目标文件】【ELF文件】【ELF从形成到假造轮廓】【理解链接和加载】

目录 一.什么是库 二.静态库 2.1创建静态库 我们在之前的路径下新建lib使用我们自己的库 2.2 使用makefile生成静态库 三.动态库 3.1动态库生成 3.2动态库使用 3.3库运行搜索路径 四.目标文件 五.ELF文件 六.ELF从形成到加载轮廓 6.1ELF形成可执行 6.2 ELF可执行文…...

项目BUG

项目BUG 前言 我创作这篇博客的目的是记录学习技术过程中的笔记。希望通过分享自己的学习经历,能够帮助到那些对相关领域感兴趣或者正在学习的人们。 项目BUG 1.低频率信号(100k或 200K以下)可以直接用一根导线焊接出几根导线来分几路,高频率信号只能…...

wordpress部署nginx版的

一、通过nginx部署wordpress 1、用yum源安装nginx yum install -y nginx 2、安装php相关软件 前提安装webtatic rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm 通过yum源安装php相关软件 yum -y install php72w php72w-pdo php72w-mysqlnd php72w…...

【鸿蒙Next】优秀鸿蒙博客集锦

鸿蒙基础开发:多文件压缩上传及断点续传_鸿蒙 断点续传-CSDN博客...

【第2章:神经网络基础与实现——2.1 前馈神经网络的结构与工作原理】

老铁们好!今天我们要来一场长达两万字的超详细技术探险,我会像拆解乐高积木一样把前馈神经网络(Feedforward Neural Network)的每个零件摆在台面上,用最接地气的方式让你彻底搞懂这个深度学习基石的工作原理。准备好了吗?我们开始吧! 第一章:神经网络的 “乐高积木” 1…...

python-leetcode-阶乘后的零

172. 阶乘后的零 - 力扣(LeetCode) class Solution:def trailingZeroes(self, n: int) -> int:count 0while n > 5:n // 5count nreturn count...

Python:学生管理系统(继承性、多态性)。

输出样例如图: 题目内容: 利用继承、多态性等面向对象程序功能编写程序,实现学生管理系统,并包含以下内容: 第一,基类为学生类,并以此派生出本科生类、研究生类。 第二,本科生类包含…...

网络安全RSA加密

网络安全课相关知识: RSA预备知识 1.1 快速幂算法 顾名思义,快速幂就是快速算底数的$n$次幂。其时间复杂度为${\rm{O(log n)}}$,与朴素的$O\left( n \right)$相比,效率有了极大的提高。具体可以参考百度百科:快速幂。…...

Vue学习笔记4

Vue学习笔记 一、自定义创建项目 基于VueCli自定义创建项目架子 二、vuex基本认知 1、vuex概述 是什么:是vue的状态管理工具(插件),状态就是数据 大白话:vuex是一个插件,可以帮助我们管理vue通用的数…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

ES6从入门到精通:前言

ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...