数据处理中多线程功能的设计逻辑,及python的多线程实现
数据处理中多线程功能的设计逻辑主要是通过并发编程模型来提高程序的执行效率和响应速度。多线程允许在同一进程中创建多个线程,每个线程独立执行任务,同时共享进程的资源(如内存空间)。这种机制特别适用于I/O密集型任务(如网络请求、文件读写等),因为这些任务在等待I/O操作完成时,其他线程可以切换到其他任务,从而充分利用CPU资源。
多线程设计逻辑
- 任务划分:将整体任务划分为多个子任务,每个子任务由一个线程独立执行。例如,在数据处理中,可以将数据集分成多个部分,每个部分由一个线程处理。
- 线程分配:根据CPU核数和任务规模,合理分配线程资源。例如,可以根据CPU的核心数量动态调整线程数量,以达到最佳性能。
- 数据合并:在所有线程完成任务后,将各线程处理的结果合并成最终结果。
- 同步与通信:为了避免线程安全问题,需要使用锁(如
Lock
或RLock
)来保护共享资源。 - 优化策略:避免频繁的I/O操作、合理分配资源以及处理异常情况,以提高多线程程序的稳定性和性能。
Python中的多线程实现
Python提供了多种实现多线程的方式,主要包括threading
模块和multiprocessing
模块。以下是Python多线程的主要实现方式:
1. 使用threading
模块
threading
模块是Python中最常用的多线程实现方式,它提供了Thread
类来创建和管理线程。以下是基本的使用方法:
- 创建线程:通过继承
threading.Thread
类并重写run()
方法来定义线程的行为。 - 启动线程:调用线程对象的
start()
方法来启动线程。 - 等待线程结束:可以使用
join()
方法等待所有线程完成。
示例代码:
import threadingdef print_numbers():for i in range(5):print(i)def print_letters():for letter in ['A', 'B', 'C']:print(letter)# 创建线程
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)# 启动线程
thread1.start()
thread2.start()# 等待线程结束
thread1.join()
thread2.join()print("完成")
2. 使用multiprocessing
模块
对于CPU密集型任务,可以使用multiprocessing
模块来绕过全局解释器锁(GIL),从而充分利用多核处理器的优势。该模块提供了Process
类来创建和管理进程。
示例代码:
from multiprocessing import Processdef worker(num):print(f"Worker {num} started")# 进行计算任务result = num * numprint(f"Worker {num} finished with result: {result}")if __name__ == "__main__":processes = []for i in range(5):p = Process(target=worker, args=(i,))processes.append(p)p.start()for p in processes:p.join()print("All processes completed")
3. 使用队列(Queue
)进行线程间通信
Python的Queue
模块提供了一种安全的方式来实现线程间的通信。通过队列,线程可以将数据放入队列中,其他线程可以从队列中取出数据进行处理。
示例代码:
import threading
import queuedef producer(queue):for i in range(5):queue.put(i)print(f"Produced: {i}")def consumer(queue):while True:item = queue.get()if item is None:breakprint(f"Consumed: {item}")queue.task_done()q = queue.Queue()
producer_thread = threading.Thread(target=producer, args=(q,))
consumer_thread = threading.Thread(target=consumer, args=(q,))producer_thread.start()
consumer_thread.start()producer_thread.join()
q.put(None) # 告诉消费者停止
consumer_thread.join()print("All tasks completed")
Python多线程的优势与局限
优势:
- 资源利用高效:多线程可以充分利用多核处理器的优势,提高程序的执行效率。
- 响应性高:适用于I/O密集型任务,能够快速响应外部输入。
- 简单易用:Python提供了丰富的API支持多线程编程。
局限:
- 全局解释器锁(GIL)限制:在单个进程中,Python的多线程无法充分利用多核处理器,因为GIL限制了同一时刻只有一个线程执行。
- 资源共享风险:多个线程共享内存空间可能导致数据竞争和同步问题。
总结
Python的多线程功能通过threading
模块和multiprocessing
模块提供了灵活的实现方式。在实际应用中,可以根据任务类型(I/O密集型或CPU密集型)选择合适的实现方式,并结合队列等工具来优化线程间的通信和同步。通过合理设计多线程程序,可以显著提高数据处理的效率和程序的响应性。
相关文章:

数据处理中多线程功能的设计逻辑,及python的多线程实现
数据处理中多线程功能的设计逻辑主要是通过并发编程模型来提高程序的执行效率和响应速度。多线程允许在同一进程中创建多个线程,每个线程独立执行任务,同时共享进程的资源(如内存空间)。这种机制特别适用于I/O密集型任务ÿ…...
DeepSeek-R1技术革命:用强化学习重塑大语言模型的推理能力
引言:低成本高性能的AI新范式 在2025年1月,中国AI公司DeepSeek发布了两个标志性模型——DeepSeek-R1-Zero与DeepSeek-R1,以仅600万美元的训练成本实现了与OpenAI O1系列(开发成本约5亿美元)相当的推理性能,…...
python中的深度学习框架TensorFlow 和 PyTorch 有什么区别?
TensorFlow 和 PyTorch 是目前最流行的两个深度学习框架,它们在设计理念、使用方式和社区支持等方面存在一些显著的区别。以下是它们的主要区别: 1. 设计理念 TensorFlow: 静态计算图:TensorFlow 使用静态计算图,即在运行模型之前需要先定义整个计算图。这使得 TensorFlo…...

用 Python 实现 DeepSeek R1 本地化部署
DeepSeek R1 以其出色的表现脱颖而出,不少朋友想将其本地化部署,网上基于 ollama 的部署方式有很多,但今天我要带你领略一种全新的方法 —— 使用 Python 实现 DeepSeek R1 本地化部署,让你轻松掌握,打造属于自己的 AI…...
Spreadjs与GcExcel
GcExcel VS SpreadJS 前言 报表系统前端化,释放后端压力,调高前端研发产能,但随着报表系统的数据量的增加,浏览器的限制,前端报表已达到瓶颈,用户使用体验逐渐不友好,为解决这一问题,找到新的解决方案,所以写下此篇对比 两者分别是什么? SpreadJS 是一款基于 HTML5…...
vue中使用lodash的debounce(防抖函数)
1、安装 npm i --save lodash.debounce2、引入 import debounce from lodash.debounce3、使用 <van-search v-model"searchValue" placeholder"输入姓名或工号" inputhandleInput />第一种: handleInput: debounce(function (val) {c…...
什么是耐环境环形光源
耐环境环形光源是一种专为工业视觉系统设计的光源,能够在恶劣环境下稳定工作。以下是其主要特点和应用: 特点 耐用性:外壳坚固,通常采用金属或高强度塑料,能承受冲击、振动和温度变化。 防护等级:具备高IP防…...

3dtiles——Cesium ion for Autodesk Revit Add-In插件
一、说明: Cesium已经支持3dtiles的模型格式转换; 可以从Cesium官方Aesset中上传gltf等格式文件转换为3dtiles; 也可以下载插件(例如revit-cesium插件)转换并自动上传到Cesium官方Aseet中。 Revit转3dtiles插件使用…...

Edge浏览器清理主页
我们都知道,Microsoft Edge浏览器是微软创造的搜索浏览器,Windows10、11自带。但是你可以看到,每次你打开Edge浏览器的时候都可以看到许多的广告,如图: 导致打开Edge浏览器的时候会遭受卡顿,广告骚扰&#…...
leetcode刷题第十天——栈与队列Ⅱ
本次刷题顺序是按照卡尔的代码随想录中给出的顺序 1047. 删除字符串中的所有相邻重复项 char* removeDuplicates(char* s) {int len strlen(s);char* tmp malloc(sizeof(char) * (len 1));int top -1, idx 0;while(idx < len) {if(top -1) tmp[top] s[idx];else {i…...
硬修复(hPPR)与软修复(sPPR)
什么是PPR? PPR(Post Package Repair)是一种内存修复技术,主要用于修复DRAM(包括LPDDR4、DDR4等)中的存储单元故障。它通过在封装后对内存芯片进行修复,提高良率和可靠性,减少因制造缺陷导致的内存失效。 想象一下,你买了一袋苹果,有些苹果表面可能有个小斑点或者磕…...
filebeat抓取nginx日志
目录 一、抓取普通的应用输出日志到elasticsearch 二、抓取nginx日志输出到ElasticSearch 2.1、nginx.conf设定日志输出为JSON格式 2.2、nginx.conf设定日志按天输出文件 2.3、抓取Nginx JSON到ElasticSearch配置 一、抓取普通的应用输出日志到elasticsearch - type: log…...

TLQ-CN10.0.2.0 (TongLINK/Q-CN 集群)部署指引 (by lqw)
文章目录 安装准备虚拟机部署部署zk集群安装zk集群启动zk集群初始化元数据(zk)关闭zk集群 部署BookKeeper集群安装BookKeeper集群初始化元数据(bk)启动BookKeeper停止 BookKeeper 部署Brokers集群安装Brokers集群启动 broker停止 …...

第 14 天:UE5 C++ 与蓝图(Blueprint)交互!
🎯 目标: ✅ 了解 C 与蓝图(Blueprint)交互的方式 ✅ 在 C 中调用蓝图函数 ✅ 让蓝图访问 C 变量和方法 ✅ 使用 UFUNCTION、UPROPERTY 进行蓝图暴露 ✅ 提高开发效率,让 C 和蓝图开发者高效协作 1️⃣ 为什么要让 C…...
小初高各学科教材,PDF电子版下载
链接:https://pan.quark.cn/s/7c2125f648e2 小初高中电子课本资料pdf合集 高中各科教材 (部分举例) - 语文:新人教版、旧人教版、苏教版等 - 数学:人教A版、沪教版、鄂教版等 - 英语:重大版、人教版…...
Trader Joe‘s EDI 需求分析
Trader Joes成立于1967年,总部位于美国加利福尼亚州,是一家独特的零售商,专注于提供高质量且价格合理的食品。公司经营范围涵盖了各类杂货、冷冻食品、健康食品以及独特的本地特色商品。 EDI需求分析 电子数据交换(EDIÿ…...
python class详解
在 Python 中,class 是用来创建新的数据类型,即对象的蓝图。类可以包含属性(变量)和方法(函数),它们定义了对象的状态和行为。以下是 Python 类的基本概念和用法的详细解释: 定义类…...

基于LVS负载均衡练习
对比 LVS 负载均衡群集的 NAT 模式和 DR 模式,比较其各自的优势。 NAT模式,全称是网络地址转换模式。NAT模式下,负载均衡器(Director)会修改请求和响应的IP地址。客户端的请求先到达Director,Director将请…...

在 rtthread中,rt_list_entry (rt_container_of) 已知结构体成员的地址,反推出结构体的首地址
rt_list_entry (rt_container_of)宏定义: /*** rt_container_of - return the start address of struct type, while ptr is the* member of struct type.*/ #define rt_container_of(ptr, type, member) \((type *)((char *)(ptr) - (unsigned long)(&((type *…...
数组_二分查找
数组_二分查找 一、leetcode-572二、题解1.代码2.思考 一、leetcode-572 二分查找 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...