机器学习核心算法解析
机器学习核心算法解析
机器学习是人工智能的核心技术之一,它通过从数据中学习模式并做出预测或决策。本文将深入解析机器学习的核心算法,包括监督学习、无监督学习和强化学习,并通过具体案例和代码示例帮助读者理解这些算法的实际应用。
1. 监督学习典型算法
监督学习是通过标注数据训练模型,使其能够对新数据进行预测。以下是几种典型的监督学习算法:
1.1 线性回归
线性回归用于预测连续值,通过拟合数据点的最佳直线来建立输入特征与输出目标之间的关系。
# 示例:使用Scikit-learn实现线性回归
from sklearn.linear_model import LinearRegression
import numpy as np# 生成数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([1, 3, 2, 3, 5])# 训练模型
model = LinearRegression()
model.fit(X, y)# 预测
print(f"预测结果:{model.predict([[6]])}") # 输出:预测结果:[5.2]
1.2 支持向量机(SVM)
SVM通过寻找最佳超平面来实现分类任务,特别适合高维数据。
# 示例:使用SVM进行分类
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)# 训练模型
model = SVC(kernel='linear')
model.fit(X_train, y_train)# 测试模型
accuracy = model.score(X_test, y_test)
print(f"模型准确率:{accuracy:.2f}")
1.3 决策树
决策树通过递归分割数据集构建树状结构,适用于分类和回归任务。
# 示例:使用决策树进行分类
from sklearn.tree import DecisionTreeClassifier# 训练模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)# 测试模型
accuracy = model.score(X_test, y_test)
print(f"模型准确率:{accuracy:.2f}")
2. 无监督学习应用场景
无监督学习用于未标注数据,目标是发现数据中的潜在结构或模式。
2.1 K-means聚类
K-means将数据划分为K个簇,每个簇的中心由簇内点的均值决定。
# 示例:使用K-means进行聚类
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 生成数据
X = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])# 训练模型
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_)
plt.show()
2.2 主成分分析(PCA)
PCA通过降维技术减少数据特征数量,同时保留主要信息。
# 示例:使用PCA进行降维
from sklearn.decomposition import PCA# 生成数据
X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]])# 训练模型
pca = PCA(n_components=1)
X_reduced = pca.fit_transform(X)print(f"降维后的数据:\n{X_reduced}")
3. 强化学习基础
强化学习通过试错法优化决策策略,广泛应用于游戏AI和机器人控制。
3.1 Q-learning
Q-learning是一种经典的强化学习算法,通过更新Q值表来学习最优策略。
# 示例:Q-learning算法
import numpy as np# 定义Q表
q_table = np.zeros((5, 5)) # 5个状态,5个动作# 定义奖励矩阵
rewards = np.array([[0, -1, 0, -1, 100],[-1, 0, -1, 0, -1],[0, -1, 0, -1, 0],[-1, 0, -1, 0, -1],[0, -1, 0, -1, 100]
])# Q-learning算法
def q_learning(q_table, rewards, episodes=1000, alpha=0.1, gamma=0.9):for _ in range(episodes):state = np.random.randint(0, 5)while state != 4: # 目标状态action = np.argmax(q_table[state])next_state = np.random.choice(np.where(rewards[state] >= 0)[0])q_table[state, action] += alpha * (rewards[state, action] + gamma * np.max(q_table[next_state]) - q_table[state, action])state = next_statereturn q_table# 运行算法
q_table = q_learning(q_table, rewards)
print("Q表:\n", q_table)
4. 算法选择指南
根据数据类型和问题类型选择合适的算法是机器学习的关键。以下是一些建议:
数据类型 | 问题类型 | 推荐算法 |
---|---|---|
结构化 | 分类预测 | 随机森林/XGBoost |
图像 | 物体识别 | 卷积神经网络(CNN) |
文本 | 情感分析 | Transformer模型 |
5. 总结
机器学习算法种类繁多,每种算法都有其独特的优势和适用场景。通过本文的解析和代码示例,读者可以更好地理解这些算法的原理和应用方法。在实际项目中,选择合适的算法并优化其参数是取得成功的关键。
相关文章:

机器学习核心算法解析
机器学习核心算法解析 机器学习是人工智能的核心技术之一,它通过从数据中学习模式并做出预测或决策。本文将深入解析机器学习的核心算法,包括监督学习、无监督学习和强化学习,并通过具体案例和代码示例帮助读者理解这些算法的实际应用。 1. …...

【C++学习篇】C++11
目录 编辑 1. 初始化列表{} 1.1 C98中的{} 1.2 C11中的{} 2. C11中的std::initializer_list 3. 右值引用和移动语义 3.1 左值和右值 3.2 左值引用和右值引用 3.3 引用延长生命周期 3.4 左值和右值的参数匹配 3.5 右值引⽤和移动语义的使⽤场景 3.5.1 左值引⽤…...

SQLite 数据库:优点、语法与快速入门指南
文章目录 一、引言二、SQLite 的优点 💯三、SQLite 的基本语法3.1 创建数据库3.2 创建表3.3 插入数据3.4 查询数据3.5 更新数据3.6 删除数据3.7 删除表 四、快速入门指南4.1 安装 SQLite4.2 创建数据库4.3 创建表4.4 插入数据4.5 查询数据4.6 更新数据4.7 删除数据4…...

数据结构——二叉树(2025.2.12)
目录 一、树 1.定义 (1)树的构成 (2)度 2.二叉树 (1)定义 (2)二叉树的遍历 (3)遍历特性 二、练习 1.二叉树 (1)创建二叉树…...

图神经网络简介
一、说明 本文介绍了GNN网络一些要素,其中与CNN进行过一些对比,并且对GNN的一些统计原理进行介绍。 二、介绍 对于不同类型的训练数据集,卷积神经网络 (CNN) 擅长处理方形或网格状或欧几里得结构化数据,…...

小程序报错The JavaScript function Pointer_stringify(ptrToSomeCString)
小程序报错The JavaScript function Pointer _stringify(ptrToSomeCString) 介绍修改地址总结 介绍 这个报错是我在打包小程序在手机上运行时报的错,这个地方问题是个小问题,其实就是Pointer_stringify(ptrToSomeCString) 函数过时…...

DeepSeek 与网络安全:AI 驱动的智能防御
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 1. 引言 随着人工智能(AI)的快速发展,深度学习技术正渗透到多个领域,从医疗诊断到…...
Redission看门狗
在 Redisson 中,lock.tryLock() 和 lock.lock() 是两种不同的加锁方式,它们的行为有所不同: lock.lock():这是阻塞方法,当调用时,如果锁当前不可用,线程将被阻塞,直到获取到锁。如果…...

LeetCode 热题 100_组合总和(58_39_中等_C++)(递归(回溯))
LeetCode 热题 100_组合总和(58_39) 题目描述:输入输出样例:题解:解题思路:思路一(递归(回溯)): 代码实现代码实现(思路一(…...
使用PHP爬虫获取1688商品分类:实战案例指南
在电商领域,商品分类信息是商家进行市场调研、选品分析和竞争情报收集的重要基础。1688作为国内领先的B2B电商平台,提供了丰富且详细的商品分类数据。通过PHP爬虫技术,我们可以高效地获取这些分类信息,为商业决策提供有力支持。 …...

Nginx location 和 proxy_pass 配置详解
概述 Nginx 配置中 location 和 proxy_pass 指令的不同组合方式及其对请求转发路径的影响。 配置效果 1. location 和 proxy_pass 都带斜杠 / location /api/ {proxy_pass http://127.0.0.1:8080/; }访问地址:www.hw.com/api/upload转发地址:http://…...

云创智城充电系统:基于 SpringCloud 的高可用、可扩展架构详解-多租户、多协议兼容、分账与互联互通功能实现
在新能源汽车越来越普及的今天,充电基础设施的管理和运营变得越来越重要。云创智城充电系统,就像一个超级智能管家,为新能源充电带来了全新的解决方案,让充电这件事变得更方便、更高效、更安全。 一、厉害的技术架构,让…...
AIP-143 标准代号
编号143原文链接AIP-143: Standardized codes状态批准创建日期2019-07-24更新日期2019-07-24 许多常见的概念,如语言、国家、货币等,都有用于数据通信和处理的通用代号(通常由国际标准化组织正式定义)。这些代号解决了在书面语言…...
机器视觉--数字图像格式
图像格式 在数字图像的世界里,不同的图像格式有着各自的特点和适用场景。了解这些图像格式,对于我们在处理图像时选择合适的存储和传输方式至关重要。下面就让我们来详细探讨一下常见的几种数字图像格式。 一、BMP 文件(Bitmap)…...
Kotlin 2.1.0 入门教程(十七)接口
接口 接口可以包含抽象方法的声明,也可以包含方法的实现。 接口与抽象类的不同之处在于,接口无法存储状态。接口可以拥有属性,但这些属性要么必须是抽象的,要么就得提供访问器的实现。 接口使用 interface 关键字来定义&#x…...

渗透测试工具:SQLmap安装教程及使用
在渗透测试的世界里,SQL注入攻击无疑是最常见且最具威胁的安全漏洞之一。幸运的是,SQLmap 这个强大的自动化工具,能够帮助我们快速识别和利用这些漏洞。如果你也想了解如何用 SQLmap 进行渗透测试,那么这篇文章就是为你准备的&…...

4.SpringSecurity在分布式环境下的使用
参考 来源于黑马程序员: 手把手教你精通新版SpringSecurity 分布式认证概念说明 分布式认证,即我们常说的单点登录,简称SSO,指的是在多应用系统的项目中,用户只需要登录一次,就可以访 问所有互相信任的应…...

RocketMQ和Kafka如何实现顺序写入和顺序消费?
0 前言 先说明kafka,顺序写入和消费是Kafka的重要特性,但需要正确的配置和使用方式才能保证。本文需要解释清楚Kafka如何通过分区来实现顺序性,以及生产者和消费者应该如何配合。 首先,顺序写入。Kafka的消息是按分区追加写入…...

SQL联合查询
文章目录 MySQL系列:1.内连接2.外连接3.自连接4.子查询5.合并查询6.插入查询 MySQL系列: 初识MySQL,MySQL常用数据类型和表的操作,增删改查(CRUD)操作(总),数据库约束数据库设计 #班级表 drop table if exists class; create ta…...
deepseek:三个月备考高级系统架构师
一、备考总体规划(2025年2月11日 - 2025年5月) 1. 第一阶段:基础夯实(2025年2月11日 - 2025年3月10日) 目标:快速掌握系统架构师考试的核心知识点。 重点内容: 计算机组成原理、操作系统、数据…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...

02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...