当前位置: 首页 > news >正文

【学习资源】时间序列数据分析方法(1)

时间序列数据分析是一个有趣的话题,让我们多花一些时间来研究。此篇为第一篇文章。主要介绍特征提取方法、深度学习时序数据分析模型、参考资源。期望能帮助大家解决工业领域的相关问题。

1 特征提取方法:信号处理

 (来源:INTELLIGENT FAULT DIAGNOSIS AND REMAINING USEFUL LIFE PREDICTION OF ROTATING MACHINERY,西安交通大学出版社)

时域数据的特征提取包括以下几种方法

提取时域特征:均值、方差、标准差、偏度、峭度、峰度等。

提取频域特征:频带能量比、MFCC等

时频域特征 :小波分析,求解各信号特定的小波带

时间序列分析:AR系数

以下特别介绍小波变换。

小波变换wavelet transform

本质特

时域转化为时+频域,有助于提取系列统计特征;

适用领

  • 滤波

小波变换具有时频局部化特性、多分辨特性、去相关特性和选基灵活性。前两个性质决定了小波滤波方法与传统方法相比具有独特的优势,即能够在去除噪声的同时,很好地保留信号的突变部分或图像的边缘。小波滤波的特点如下。(1)非平滑性。平滑是去除高频信息而保留低频信息;而小波滤波是要试图去除所有噪声,保留所有信号,并不考虑它们的频率范围。(2)它是小波变换域对小波系数进行非线性处理

  • 去除噪音

小波变换在时域和频域同时具有良好的局部化性质,不仅可将图像的结构和纹理分别表现在不同分辨率层次上,而且具有检测边沿(局域突变)的能力,因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边沿信息

  • (1)低熵性。小波系数的稀疏分布使图像变换后的熵降低
  • (2)多分辨率特性。由于采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等,可在不同分辨率下根据信号和噪声分布特点进行去噪
  • (3)去相关性。因小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪
  • (4)选基灵活性。由于小波变换可以灵活选择基,也可根据信号特点和去噪要求选择多带小波、小波包、平移不变小波等,对不同相应场合,可以选择不同的小波母函数

此外,小波变换还可以用于重构图像、压缩信号、识别和检索信号、检测边缘等。

2 深度学习时序数据分析模型

本文介绍ROCKET、TST和Inceptiontime,新的文章会介绍其他模型。

2.1 ROCKET(RandOm Convolutional KErnel Transform)

论文 https://arxiv.org/pdf/1910.13051.pdf ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

论文摘要:ROCKET 通过使用随机卷积核转换输入时间序列并使用转换后的特征来训练线性分类器,从而以大多数现有方法的一小部分计算费用实现了最先进的准确性。我们将 ROCKET 重新构造为一种新方法 MINIROCKET,使其在更大的数据集上的速度提高了 75 倍,并使其几乎是确定性的(并且可选地,通过额外的计算费用,完全确定性),同时保持基本相同的准确性。使用这种方法,可以在不到 10 分钟的时间内对来自 UCR 档案的所有 109 个数据集的分类器进行训练和测试,以达到最先进的准确度。 MINIROCKET 比具有可比精度的任何其他方法(包括 ROCKET)快得多,并且比任何其他计算成本甚至大致相似的方法都要准确得多。

代码文档 https://timeseriesai.github.io/tsai/models.ROCKET.html

参考代码https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/02_ROCKET_a_new_SOTA_classifier.ipynb

具体方法:ROCKET 将大量固定的、不可训练的、独立的卷积应用于时间序列。然后从每个卷积输出(一种池化形式)中提取许多特征,每个样本通常生成 10000 个特征。 (这些功能只是浮点数。)特征被存储以便它们可以被多次使用。然后它学习一个简单的线性头部,根据其特征预测每个时间序列样本。典型的 PyTorch 头可能基于线性层。当训练样本数量较少时,经常使用sklearn的RidgeClassifier。通过实验选择了卷积的固定权重和池化方法,以有效预测广泛的现实世界时间序列。最初的 ROCKET 方法使用了一系列固定卷积,权重根据随机分布选择。基于从 ROCKET 吸取的经验教训,MiniRocket 将卷积细化为特定的预定义集合,该集合被证明至少与 ROCKET 一样有效。它的计算速度也比原来的 ROCKET 快得多。实际上,论文作者“建议现在应该考虑使用 MiniRocket 作为 Rocket 的默认变体。”MiniROCKET 是在 Python 中使用 numba 加速和特定于算法的数学加速实现的。它运行速度非常快,并行使用 CPU 内核。 MiniRocket 的 2 个实现:具有类似 sklearn 的 API 的 cpu 版本(可用于小数据集 - <10k 样本),以及MiniRocket 的 PyTorch 实现,针对 GPU 进行了优化。它的运行速度比 CPU 版本快(3-25 倍,具体取决于您的 GPU),并为进一步实验提供了一定的灵活性。

MINIRocket效果不好的原因在于:只有卷积特征,没有序列特征。

2.2 TST Time Series Transformer

论文 Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2020). A Transformer-based Framework for Multivariate Time Series Representation Learning. arXiv preprint arXiv:2010.02803v2

论文摘要:首次提出了一个基于变换器的框架,用于多元时间序列的无监督表示学习。预训练模型可用于下游任务,例如回归和分类、预测和缺失值插补。通过在多个用于多元时间序列回归和分类的基准数据集上评估我们的模型,我们表明我们的建模方法不仅代表了迄今为止对多元时间序列采用无监督学习的最成功的方法,而且还超越了当前的状态——监督方法的最先进性能;即使训练样本的数量非常有限,它也会这样做,同时提供计算效率。最后,我们证明了我们的 Transformer 模型的无监督预训练比完全监督学习提供了显着的性能优势,即使没有利用额外的未标记数据,即通过无监督目标重用相同的数据样本。 

代码文档 https://timeseriesai.github.io/tsai/models.TST.html

参考代码

tsai/tutorial_nbs/07_Time_Series_Classification_with_Transformers.ipynb at main · timeseriesAI/tsai · GitHub

图片来源:arXiv:2010.02803v2

2.3 Inceptiontime

论文 [1909.04939] InceptionTime: Finding AlexNet for Time Series Classification InceptionTime: Finding AlexNet for Time Series Classification

论文摘要:本文将深度学习置于时间序列分类 (TSC) 研究的前沿。 TSC 是机器学习领域,其任务是对时间序列进行分类(或标记)。该领域过去几十年的工作在分类器的准确性方面取得了重大进展,目前最先进的技术由 HIVE-COTE 算法代表。虽然非常准确,但 HIVE-COTE 不能应用于许多现实世界的数据集,因为它对于具有 N 个长度为 T 的时间序列的数据集的训练时间复杂度为 O(N2 * T4)。例如,它需要更多的 HIVE-COTE从一个 N = 1500 个短长度 T = 46 的时间序列的小数据集学习超过 8 天。同时深度学习因其高准确率和可扩展性而受到了极大的关注。最近的 TSC 深度学习方法具有可扩展性,但不如 HIVE-COTE 准确。介绍了 InceptionTime——受 Inception-v4 架构启发的深度卷积神经网络 (CNN) 模型的集合。实验表明,InceptionTime 在准确性方面与 HIVE-COTE 不相上下,同时具有更高的可扩展性:它不仅可以在一小时内从 1,500 个时间序列中学习,而且在 13 小时内也可以从 800 个时间序列中学习,数量为完全超出 HIVE-COTE 范围的数据。

代码文档 https://timeseriesai.github.io/tsai/models.InceptionTime.html

参考代码

tsai/tutorial_nbs/07_Time_Series_Classification_with_Transformers.ipynb at main · timeseriesAI/tsai · GitHub

3 参考资源

3.1 时序数据分析Python库 tsai

 tsai GitHub - timeseriesAI/tsai: Time series Timeseries Deep Learning Machine Learning Python Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai

3.2 书籍《时间序列分析及其应用》

Time Series Analysis and Its Applications

详细介绍可查看 【新书】时间序列分析及其应用:附 R 示例,第五版

3.3 时间序列预测:理论与实践

Forecasting Big Time Series: Theory and Practice | Tutorial for The Web Conference 2020

详细可查看 【CMU-Amazon】时间序列预测:理论与实践,379页ppt阐述大规模时序预测工具与方法

这里介绍了时间序列预测经典方法和现代方法,经典方法包括相似性搜索和索引、数字信号处理、线性预测方法和非线性预测,现代方法包括张量分析和深度学习。

代码仓库

GitHub - lovvge/Forecasting-Tutorials

3.4 相关视频

【专题4:时序分析技术在生产运营中的应用】1-2.2时序数据挖掘算法

【专题4:时序分析技术在生产运营中的应用】2.3-3时间序列预测方法和案例

视频对应课件在GitHub上

工业智能实战4-时序分析技术的应用.pdf

下次继续讨论时间序列数据分析相关话题,包括一些模型和工程技巧,敬请期待。

相关文章:

【学习资源】时间序列数据分析方法(1)

时间序列数据分析是一个有趣的话题&#xff0c;让我们多花一些时间来研究。此篇为第一篇文章。主要介绍特征提取方法、深度学习时序数据分析模型、参考资源。期望能帮助大家解决工业领域的相关问题。 1 特征提取方法&#xff1a;信号处理 (来源:INTELLIGENT FAULT DIAGNOSIS A…...

盛铂科技SWFA100捷变频频率综合器:高性能国产射频系统的关键选择

在现代射频系统中&#xff0c;频率综合器是实现精确频率控制和快速跳频的核心组件。盛铂科技推出的SWFA100捷变频频率综合器凭借其卓越的性能和小型化设计&#xff0c;成为高性能射频系统中的理想选择。 SWFA100捷变频频率综合器 高速跳频与宽频覆盖 SWFA100捷变频频率综合器能…...

释放你的元数据:使用 Elasticsearch 的自查询检索器

作者&#xff1a;来自 Elastic Josh Asres 了解如何使用 Elasticsearch 的 “self-quering” 检索器来通过结构化过滤器提高语义搜索的相关性。 在人工智能搜索的世界中&#xff0c;在海量的数据集中高效地找到正确的数据至关重要。传统的基于关键词的搜索在处理涉及自然语言的…...

【快速幂算法】快速幂算法讲解及C语言实现(递归实现和非递归实现,附代码)

快速幂算法 快速幂算法可用分治法实现 不难看出&#xff0c;对任意实数a和非负整数n&#xff0c;有&#xff1a; a n { 1 , n 0 , a ≠ 0 0 , a 0 ( a n 2 ) 2 , n > 0 , n 为偶数 ( a n 2 ) 2 ∗ a , n > 0 , n 为奇数 a^n \begin{cases} 1, & n 0, a\neq 0…...

3. 导入官方dashboard

官方dashboard&#xff1a;https://grafana.com/grafana/dashboards 1. 点击仪表板 - 新建 - 导入 注&#xff1a;有网络的情况想可以使用ID&#xff0c;无网络情况下使用仪表板josn文件 2. 在官方dashboard网页上选择符合你现在数据源的dashboard - 点击进入 3. 下拉网页选…...

怎么理解 Spring Boot 的约定优于配置 ?

在传统的 Spring 开发中&#xff0c;大家可能都有过这样的经历&#xff1a;项目还没开始写几行核心业务代码&#xff0c;就已经在各种配置文件中耗费了大量时间。比如&#xff0c;要配置数据库连接&#xff0c;不仅要在 XML 文件里编写冗长的数据源配置&#xff0c;还要处理事务…...

Dify 是什么?Dify是一个开源的LLM应用开发平台,支持快速搭建生成式AI应用,具有RAG管道、Agent功能、模型集成等特点

首先&#xff0c;Dify是一个开源的LLM应用开发平台&#xff0c;支持快速搭建生成式AI应用&#xff0c;具有RAG管道、Agent功能、模型集成等特点75。根据搜索结果&#xff0c;网页6详细对比了多个RAG和AI开发框架&#xff0c;包括MaxKB、FastGPT、RagFlow、Anything-LLM等。其中…...

数据预处理都做什么,用什么工具

数据预处理是数据分析、数据挖掘和机器学习中的关键步骤&#xff0c;其目的是将原始数据转换为适合后续分析或建模的格式。以下是关于数据预处理的主要内容及常用工具的详细介绍&#xff1a; 一、数据预处理的主要任务 数据预处理的主要任务包括以下几个方面&#xff1a; 数据…...

windows蓝牙驱动开发-在蓝牙配置文件驱动程序中接受 L2CAP 连接

L2CAP 服务器配置文件驱动程序会响应来自远程设备的传入逻辑链接控制和适应协议 (L2CAP) 连接请求。 例如&#xff0c;PDA 的 L2CAP 服务器配置文件驱动程序将响应来自 PDA 的传入连接请求。 接收传入 L2CAP 连接请求 1. 若要接收来自特定 PSM 的任何远程设备的传入 L2CAP 连…...

【原理图PCB专题】自制汉字转码工具,适配Allgero 17版本 Skill

众所周知,在使用Skill来编写Allegro控制脚本时如果程序的源码里是汉字,那么有可能会出现乱码。比如像下图这样的程序: 在Allegro中运行如下图所示: 那么如果我们需要让他转成正常的中文字符,就需要将字符转成GBK编码 打开自制小软件:中文与GBK编码互转V1…...

欧拉公式在信号处理中的魔法:调幅信号的生成与频谱分析

欧拉公式在信号处理中的魔法:调幅信号的生成与频谱分析 “数学不是枯燥的符号,而是宇宙的诗歌。” 当我们用欧拉公式解开调幅信号的频谱密码时,仿佛看到电磁波在时空中跳动的频率之舞。这篇博客将带你亲手触摸信号处理中的数学之美。 一、当欧拉公式遇见调幅信号:一场数学与…...

如何在Ubuntu中切换多个PHP版本

在Ubuntu环境下实现PHP版本的灵活切换&#xff0c;是众多开发者与系统管理员的重要技能之一。下面&#xff0c;我们将深入探讨如何在Ubuntu系统中安装、配置及管理多个PHP版本&#xff0c;确保您的开发环境随心所欲地适应各类项目需求。 开始前的准备 确保您的Ubuntu系统保持…...

基于opencv的HOG+角点匹配教程

1. 引言 在计算机视觉任务中&#xff0c;特征匹配是目标识别、图像配准和物体跟踪的重要组成部分。本文介绍如何使用 HOG&#xff08;Histogram of Oriented Gradients&#xff0c;方向梯度直方图&#xff09; 和 角点检测&#xff08;Corner Detection&#xff09; 进行特征匹…...

Linux线程概念与线程操作

Linux线程概念与线程操作 线程概念 前面提到进程程序代码和数据进程结构体&#xff0c;在线程部分就需要进一步更新之前的认识 进程实际上承担分配系统资源的基本实体&#xff0c;而线程是进程中的一个执行分支&#xff0c;是操作系统调度的基本单位 此处需要注意&#xff0…...

AI软件栈:LLVM分析(五)

数据流分析是编译优化、代码生成的关键理论。其数学基础是离散数学中的半格(Semi-Lattice)和格。半格与格不仅是编译优化和代码生成的重要理论基础,也是程序分析、验证及自动化测试的系统理论基础。 文章目录 格、半格与不动点格、半格与不动点 半格是指针对二元组 < S …...

Git指南-从入门到精通

代码提交和同步命令 流程图如下&#xff1a; 第零步: 工作区与仓库保持一致第一步: 文件增删改&#xff0c;变为已修改状态第二步: git add &#xff0c;变为已暂存状态 bash $ git status $ git add --all # 当前项目下的所有更改 $ git add . # 当前目录下的所有更改 $ g…...

Linux 文件系统挂载

系列文章目录 Linux内核学习 Linux 知识&#xff08;1&#xff09; Linux 知识&#xff08;2&#xff09; WSL Ubuntu QEMU 虚拟机 Linux 调试视频 PCIe 与 USB 的补充知识 vscode 使用说明 树莓派 4B 指南 设备驱动畅想 Linux内核子系统 Linux 文件系统挂载 文章目录 系列文章…...

Qt QSpinBox 总结

Qt5 QSpinBox 总结 1. 基本特性 用途&#xff1a;用于输入和调整整数值&#xff0c;支持通过上下箭头、键盘输入或编程方式修改值。 默认范围&#xff1a;0 到 99&#xff0c;可通过 setRange(min, max) 自定义。 步长控制&#xff1a;setSingleStep(step) 设置单步增减值&a…...

【OJ项目】深入剖析题目接口控制器:功能、实现与应用

《深入剖析题目接口控制器&#xff1a;功能、实现与应用》 一、引言 在在线编程平台或竞赛系统中&#xff0c;题目管理和提交是核心功能之一。QuestionController 类作为控制器层&#xff0c;承担着处理与题目相关的各种请求的重要职责&#xff0c;包括题目的增删改查、题目提…...

周考考题(学习自用)

1.查询student表中name叫张某的信息 select * from student where name张某; 2.写出char和varchar类型的区别 1&#xff09;char存储固定长度的字符串&#xff0c;varchar存储可变长度的字符串&#xff08;在实际长度的字符串上加上一个字节用于存储字符串长度&#xff09;&a…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...