当前位置: 首页 > news >正文

国产编辑器EverEdit - 二进制模式下观察Window/Linux/MacOs换行符差异

1 换行符格式

1.1 应用场景

  稍微了解计算机历史的人都知道, 计算机3大操作系统: Windows、Linux/Unix、MacOS,这3大系统对文本换行的定义各不相同,且互不相让,导致在文件的兼容性方面存在一些问题,比如它们对换行的定义:

  • Windows:回车符(CR)+换行符(LF)
  • Linux/Unix: 换行符(LF)
  • MacOS:回车符(CR)

在Windows上编写的代码,默认使用CR+LF表示换行,这种代码/脚本文件不经处理,上传到Linux/Unix、MacOS都会出现各种错误,为此,程序员或工程师,经常要将这些换行符替换为目标机器的标准,为此,Linux上还有专门的命令dox2unix来完成该任务。

1.2 使用方法

  1. 选择主菜单文档 -> 换行符格式即可展开换行符选项子菜单,如下图所示:
    在这里插入图片描述

选择对应目标机器的换行符模式后,保存文档。

1.3 磁盘视角的换行模式

将光标放在行尾,并切换到Hex编辑模式,可以方便的看到换行符的模式

  • Windows模式
    在这里插入图片描述

  • Linux/Unix模式
    在这里插入图片描述

  • MacOS模式
    在这里插入图片描述


文档作者声明:本文档仅用于学习交流,未经作者许可,不得将本文档用于其他目的。
Copyright © 2022~2024 All rights reserved.

相关文章:

国产编辑器EverEdit - 二进制模式下观察Window/Linux/MacOs换行符差异

1 换行符格式 1.1 应用场景 稍微了解计算机历史的人都知道, 计算机3大操作系统: Windows、Linux/Unix、MacOS,这3大系统对文本换行的定义各不相同,且互不相让,导致在文件的兼容性方面存在一些问题,比如它们…...

文心一言4月起全面免费,6月底开源新模型:AI竞争进入新阶段?

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼 Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、文心一言免费化的背后:AI成本与应用的双重驱动1️⃣成本下降,推动文心一言普及2…...

解锁机器学习算法 | 线性回归:机器学习的基石

在机器学习的众多算法中,线性回归宛如一块基石,看似质朴无华,却稳稳支撑起诸多复杂模型的架构。它是我们初涉机器学习领域时便会邂逅的算法之一,其原理与应用广泛渗透于各个领域。无论是预测房价走势、剖析股票市场波动&#xff0…...

如何使用Three.js制作3D月球与星空效果

目录 1. 基本设置2. 创建星空效果3. 创建月球模型4. 添加中文3D文字5. 光照与相机配置6. 动画与控制7. 响应式布局8. 结语 在本文中,我们将一起学习如何利用Three.js实现一个3D月球与星空的效果,并添加一些有趣的元素,比如中文3D文字和互动功…...

SQL语句语法

SQL数据库的结构为 库database 表table 段segment 行row 列column 或field SQL 语句主要分为以下几类: 数据定义语言(DDL):用于定义数据库对象,如数据库、表、视图、索引等。数据操作语言(DML)&…...

github上文件过大无法推送问题

GitHub 对文件大小有限制,超过 100 MB 的文件无法直接推送到仓库中。 解决思路: 使用 Git Large File Storage (Git LFS) 来管理大文件不上传对应的大文件 使用Git LFS: 1. 安装 Git LFS 首先,你需要安装 Git LFS。可以按照以…...

微信小程序的请求函数封装(ts版本,uniapp开发)

主要封装函数代码: interface HttpOptions {url: string;method?: string;headers?: { [key: string]: string };data?: any; }class Http {private timeout: number;private baseUrl: string;public constructor() { this.timeout 60 * 1000;this.baseUrl ht…...

Visual Studio Code支持WSL,直接修改linux/ubuntu中的文件

步骤1 开始通过 WSL 使用 VS Code | Microsoft Learn 点击远程开发扩展包。 步骤2 Remote Development - Visual Studio Marketplace 点击install, 允许打开Visual Studio Code。 步骤3 共有4项,一齐安装。 步骤4 在WSL Linux(Ubuntu)中&#xf…...

openAI最新o1模型 推理能力上表现出色 准确性方面提升 API如何接入?

OpenAI o1模型在回答问题前会进行深入思考,并生成一条内部推理链,使其在尝试解决问题时可以识别并纠正错误,将复杂的步骤分解为更简单的部分,并在当前方法无效时尝试不同的途径。据悉,o1不仅数学水平与美国奥林匹克竞赛…...

GC 基础入门

什么是GC(Garbage Collection)? 内存管理方式通常分为两种: 手动内存管理(Manual Memory Management)自动内存管理(Garbage Collection, GC) 手动内存管理 手动内存管理是指开发…...

Go语言协程Goroutine高级用法(一)

什么协程 在Go语言中,协程就是一种轻量的线程,是并发编程的单元,由Go来管理,所以在GO层面的协程会更加的轻量、高效、开销更小,并且更容易实现并发编程。 轻量级线程 Go语言中协程(线程)与传…...

DeepSeek处理自有业务的案例:让AI给你写一份小众编辑器(EverEdit)的语法着色文件

1 DeepSeek处理自有业务的案例:让AI给你写一份小众编辑器(EverEdit)的语法着色文件 1.1 背景 AI能力再强,如果不能在企业的自有业务上产生助益,那基本也是一无是处。将企业的自有业务上传到线上训练,那是脑子进水的做法&#xff…...

【鸿蒙HarmonyOS Next实战开发】lottie动画库

简介 lottie是一个适用于OpenHarmony和HarmonyOS的动画库,它可以解析Adobe After Effects软件通过Bodymovin插件导出的json格式的动画,并在移动设备上进行本地渲染。 下载安裝 ohpm install ohos/lottieOpenHarmony ohpm 环境配置等更多内容&#xff0c…...

PAT乙级真题 — 1084 外观数列(java)

外观数列是指具有以下特点的整数序列: d, d1, d111, d113, d11231, d112213111, ...它从不等于 1 的数字 d 开始,序列的第 n1 项是对第 n 项的描述。比如第 2 项表示第 1 项有 1 个 d,所以就是 d1;第 2 项是 1 个 d(对…...

从 ClickHouse 到 Apache Doris:在网易云音乐日增万亿日志数据场景下的落地

导读:日志数据已成为企业洞察系统状态、监控网络安全及分析业务动态的宝贵资源。网易云音乐引入 Apache Doris 作为日志库新方案,替换了 ClickHouse。解决了 ClickHouse 运维复杂、不支持倒排索引的问题。目前已经稳定运行 3 个季度,规模达到…...

STM32——HAL库开发笔记19(串口中断接收实验)(参考来源:b站铁头山羊)

本实验,我们以中断的方式使得串口发送数据控制LED的闪烁速度,发送1,慢闪;发送2,速度正常;发送3,快闪。 一、电路连接图 二、实现思路&CubeMx配置 1、实现控制LED的闪烁速度 uint32_t bli…...

清影2.0(AI视频生成)技术浅析(二):自然语言处理

清影2.0(AI视频生成)中的自然语言处理(NLP)技术是其核心组件之一,负责将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指导后续的视频生成过程。 一、基本原理 1. 目标 清影2.0的NLP技术旨在将用户输入的自然语言文本转化为机器可以理解的语义表示,从而指…...

Unity序列化多态数组

文档 Json序列化 脚本序列化 问题 Unity序列化数组时,只能存储基类内容,子类内容缺少。 Unity版本 2019.4.40 原因:Unity序列化不支持多态 测试类 将testarray类序列化时,多态列表personlist只转换了基类数据,子类…...

Spring Framework 中文官方文档

spring的部分中文文档。给总结在下面了: 看英文的大佬可以绕路了哈哈哈 一、 历史、设计理念、反馈、入门。 二、 IoC 容器、事件、资源、i18n、验证、数据绑定、类型转换、SpEL、AOP 三、 模拟对象、TestContext 框架、Spring MVC 测试、WebTestClient。 四、 事…...

力扣-二叉树-257 二叉树的所有路径

思路 除去根节点&#xff0c;每一层添加->val&#xff0c;然后使用前序遍历的顺序 代码 class Solution { public:vector<string> res;void getTreePaths(string s, TreeNode* root){s "->";s to_string(root->val);if(root->left nullptr &…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...