DeepAR:一种用于时间序列预测的深度学习模型
介绍
DeepAR是一种基于递归神经网络(RNN)的时间序列预测模型,由亚马逊在2017年提出。它特别适用于处理多变量时间序列数据,并能够生成概率预测。DeepAR通过联合训练多个相关时间序列来提高预测性能,从而在实际应用中表现出色。
工作原理
模型架构
DeepAR的核心是一个基于LSTM(长短期记忆网络)的递归神经网络。其主要组成部分包括:
- 输入层:时间序列数据及其相关的协变量。
- 编码器:一个LSTM网络,用于捕捉时间序列的历史信息。
- 解码器:另一个LSTM网络,用于生成未来的预测值。
- 输出层:生成预测值的概率分布(通常是高斯分布或负二项分布)。
训练过程
-
数据准备:
- 输入数据包括历史观测值和协变量(如日期特征、外部因素等)。
- 每个时间序列被分成训练集和测试集。
-
模型训练:
- 对于每个时间点,模型使用之前的观测值和协变量作为输入,生成当前时间点的预测值。
- 损失函数通常采用负对数似然(Negative Log-Likelihood, NLL),以最大化预测分布的对数似然。
-
采样与预测:
- 在预测阶段,模型通过对未来时间点进行多次采样来生成预测分布。
- 采样结果可以用来计算预测的均值、分位数等统计量。
优势
- 联合建模:DeepAR通过联合训练多个相关时间序列,能够更好地捕捉时间序列之间的相互关系,提高预测精度。
- 概率预测:生成的预测不仅包含点估计,还包括预测值的概率分布,有助于评估预测的不确定性。
- 灵活性:可以处理不同长度和频率的时间序列数据,并且支持多种类型的协变量。
应用案例
零售需求预测
在零售业中,准确的需求预测对于库存管理和供应链优化至关重要。DeepAR可以应用于多个商品类别的销售数据,通过联合建模来提高预测精度。例如,亚马逊在其零售业务中使用DeepAR来预测不同产品的销售量,从而优化库存水平。
能源消耗预测
能源公司需要准确预测电力、天然气等能源的消耗量,以便合理调度资源。DeepAR可以结合历史能耗数据和天气预报等协变量,生成未来能耗的概率预测,帮助能源公司做出更合理的决策。
金融数据分析
在金融领域,股票价格、汇率等时间序列数据具有高度的不确定性和波动性。DeepAR可以通过生成概率预测,帮助投资者更好地理解和管理风险。例如,可以使用DeepAR来预测股票价格的变化,为交易策略提供支持。
实现步骤
数据准备
- 收集数据:获取时间序列数据及其相关的协变量。
- 预处理:
- 处理缺失值。
- 标准化或归一化数据。
- 提取时间特征(如月份、星期几等)。
模型构建
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDatasetclass DeepAR(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(DeepAR, self).__init__()self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.linear = nn.Linear(hidden_size, output_size)def forward(self, x, h):out, h = self.lstm(x, h)out = self.linear(out)return out, h# 参数设置
input_size = 5 # 输入特征维度
hidden_size = 64 # LSTM隐藏层大小
output_size = 1 # 输出维度
num_layers = 1 # LSTM层数
batch_size = 32 # 批次大小
epochs = 100 # 训练轮数# 初始化模型
model = DeepAR(input_size, hidden_size, output_size, num_layers)
criterion = nn.GaussianNLLLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 数据加载
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# 训练模型
for epoch in range(epochs):for i, (inputs, targets) in enumerate(train_loader):optimizer.zero_grad()h = Noneoutputs, h = model(inputs, h)loss = criterion(outputs, targets, torch.ones_like(outputs))loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')
模型评估
-
生成预测:
- 使用训练好的模型对测试集进行预测。
- 通过多次采样生成预测分布。
-
评估指标:
- 计算均方误差(MSE)、平均绝对误差(MAE)等点估计指标。
- 评估预测分布的覆盖范围和置信区间。
结果分析
- 可视化:绘制预测值与真实值的对比图。
- 不确定性分析:展示预测分布的置信区间,评估预测的不确定性。
总结
DeepAR是一种强大的时间序列预测模型,特别适用于多变量时间序列数据。通过联合建模和生成概率预测,DeepAR能够在多种应用场景中提供高精度的预测结果。
相关文章:
DeepAR:一种用于时间序列预测的深度学习模型
介绍 DeepAR是一种基于递归神经网络(RNN)的时间序列预测模型,由亚马逊在2017年提出。它特别适用于处理多变量时间序列数据,并能够生成概率预测。DeepAR通过联合训练多个相关时间序列来提高预测性能,从而在实际应用中表…...
权限模型深度解析:RBAC vs ABAC vs PBAC vs TBAC,如何选择最适合的方案?
在数字化系统的安全架构中,权限管理如同一把“隐形钥匙”,既需精准控制访问边界,又要灵活适配复杂多变的业务需求。从传统的角色划分到动态属性策略,从合规驱动的集中管控到任务流程的临时授权,RBAC、ABAC、PBAC、TBAC…...
Windows逆向工程入门之堆栈结构与信息获取
公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 1. 堆栈结构基础 堆栈的主要操作: 2. 代码功能解析 2.1 加载 ntdll.dll 2.2 获取 NtQueryInformationThread 函数指针 2.3 调用 NtQueryInformationThread 获取线程信息…...
【c++初阶】类和对象②默认成员函数以及运算符重载初识
目录 编辑 默认成员函数: 构造函数 构造函数的特性: 析构函数: 拷贝构造函数: 1. 拷贝构造函数是构造函数的一个重载形式。 2. 拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报…...
【做一个微信小程序】校园地图页面实现
前言 上一个教程我们实现了小程序的一些的功能,有背景渐变色,发布功能有的呢,已支持图片上传功能,表情和投票功能开发中(请期待)。下面是一个更高级的微信小程序实现,包含以下功能:…...
成熟开发者需具备的能力
精业务 • 指深入理解和熟悉所开发软件的业务逻辑和需求。 • 开发者需要明确软件要解决的问题、面向的用户群体以及核心功能等。 • 精业务有助于开发者更好地设计系统架构、编写符合业务需求的代码,并能根据业务变化灵活调整开发计划。 懂原理 • 指掌握编程的基…...
计算机毕业设计--基于深度学习技术(Yolov11、v8、v7、v5)算法的高效人脸检测模型设计与实现(含Github代码+Web端在线体验界面)
基于深度学习技术(Yolov11、v8、v7、v5)算法的高效人脸检测模型 Yolo算法应用之《基于Yolo的花卉识别算法模型设计》,请参考这篇CSDN作品👇 计算机毕业设计–基于深度学习技术(Yolov11、v8、v7、v5)算法的…...
力扣做题记录 (二叉树)
二叉树 打算先来了解二叉树基础,都是简单题,目的是熟悉代码格式和解题基础思路。 1、二叉树最大深度 二叉树最大深度 方法一、深度搜索 直接用原函数做递归,比较简单 /*** Definition for a binary tree node.* struct TreeNode {* …...
机试刷题_字符串的排列【python】
题目:字符串的排列 from os import dup # # 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 # # # param str string字符串 # return string字符串一维数组 # class Solution:def backtrack(self,res,state,choi…...
百度智能云—千帆 ModelBuilder API的简单调用(Java)
百度简介 百度(Baidu)是拥有强大互联网基础的领先AI公司。百度愿景是:成为最懂用户,并能帮助人们成长的全球顶级高科技公司。 “百度”二字,来自于八百年前南宋词人辛弃疾的一句词:众里寻他千百度。这句话…...
unity学习43:子状态机 sub-state machine
目录 1sub-state machine子状态机 1.1 创建 sub-state machine 1.2 sub-state machine 内容 1.3 子状态机的应用 2 子状态机不同于blend tree的嵌套 3 应用例子:若角色拿不同武器的动画设计,可以使用2种方法 3.1 在1个图层layer里,使用…...
Qt MainWindow
文章目录 0. 概述1. 菜单栏 QMenuBar1.1 例子1,使用图形化界面1.2 例子2,使用代码创建1.3 例子3,添加快捷键1.4 例子4,添加子菜单1.5 例子5,添加分割线和图标1.6 内存泄漏问题 2. 工具栏 QToolBar2.1 例子1,…...
GDB QUICK REFERENCE (GDB 快速参考手册)
GDB QUICK REFERENCE {GDB 快速参考手册} References GDB QUICK REFERENCE GDB Version 4 https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf 查看方式:在新标签页中打开图片 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/ [2] gdb-refc…...
【数据结构】 栈和队列
在计算机科学的世界里,数据结构是构建高效算法的基础。栈(Stack)和队列(Queue)作为两种基本且重要的数据结构,在软件开发、算法设计等众多领域都有着广泛的应用。今天,我们就来深入探讨一下栈和…...
AI视频创作教程:如何用AI让古画动起来。
事情缘由: 如果是简单的图,找原图直接写提示词即可。 如果碰到多人多活动的图,直接出的效果会很不好,那么该怎么做呢? 图片分模块 首先,复杂部分的图,把长图分多个模块。 比如这张图࿰…...
撕碎QT面具(1):Tab Widget转到某个Tab页
笔者未系统学过C语法,仅有Java基础,具体写法仿照于大模型以及其它博客。自我感觉,如果会一门对象语言,没必要先刻意学C,因为自己具有对象语言的基础,等需要用什么再学也不迟。毕竟不是专门学C去搞算法。 1…...
DeepSeek24小时写作机器人,持续创作高质量文案
内容创作已成为企业、自媒体和创作者的核心竞争力。面对海量的内容需求,人工创作效率低、成本高、质量参差不齐等问题日益凸显。如何在有限时间内产出高质量内容?DeepSeek写作机器人,一款24小时持续创作的智能工具,为企业和个人提…...
npm安装依赖(npm install)时遇到认证错误的解决方案
问题描述 在使用 npm install 安装依赖时遇到以下错误: npm error code E401 npm error Incorrect or missing password.解决方案 方案一:使用淘宝(或其它国内公共)镜像(如果已经是淘宝镜像跳过此步) 设…...
SpringBoot+微信小程序+数据可视化的宠物到家喂宠服务(程序+论文+讲解+安装+调试+售后等)
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统介绍 在经济高速发展、物质生活极大丰富的当下,人们的精神需求愈发凸显࿰…...
免费大模型网站
腾讯元宝 腾讯元宝 秘塔搜索 秘塔搜索 超算互联网 超算互联网回答速度很慢 Chatbot Arena Chatbot Arena 大模型竞技场。...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
