当前位置: 首页 > news >正文

动手学Agent——Day2

文章目录

    • 一、用 Llama-index 创建 Agent
      • 1. 测试模型
      • 2. 自定义一个接口类
      • 3. 使用 ReActAgent & FunctionTool 构建 Agent
    • 二、数据库对话 Agent
      • 1. SQLite 数据库
        • 1.1 创建数据库 & 连接
        • 1.2 创建、插入、查询、更新、删除数据
        • 1.3 关闭连接
        • 建立数据库
      • 2. ollama
      • 3. 配置对话 & Embedding 模型
    • 三、RAG 接入Agent

一、用 Llama-index 创建 Agent

LlamaIndex 实现 Agent,需要导入:

  • Function Tool:将工具函数放在 Function Tool 对象中
    • 工具函数 -> 完成 Agent 任务。⚠️大模型会根据函数注释来判断使用哪个函数来完成任务,所以,注释一定要写清楚函数功能和返回值
  • ReActAgent:通过结合推理(Reasoning)和行动(Acting)来创建动态的 LLM Agent 的框架
    • 初始推理:agent首先进行推理步骤,以理解任务、收集相关信息并决定下一步行为
    • 行动:agent基于其推理采取行动——例如查询API、检索数据或执行命令
    • 观察:agent观察行动的结果并收集任何新的信息
    • 优化推理:利用新消息,代理再次进行推理,更新其理解、计划或假设
    • 重复:代理重复该循环,在推理和行动之间交替,直到达到满意的结论或完成任务

1. 测试模型

  • 使用一个数学能力较差的模型
# https://bailian.console.aliyun.com/#/model-market/detail/chatglm3-6b?tabKey=sdk
from dashscope import Generation messages = [{'role': "system", 'content': 'You are a helpful assistant.'},{'role': "user", 'content': '9.11 和 9.8 哪个大?'},
]gen = Generation()
response = gen.call(api_key=os.getenv("API_KEY"),model='chatglm3-6b',messages=messages,result_format='message',
)print(response.output.choices[0].message.content)
9.11 比 9.8 更大。

2. 自定义一个接口类

# https://www.datawhale.cn/learn/content/86/3058
from llama_index.core.llms import CustomLLM, LLMMetadata, CompletionResponse
from llama_index.core.llms.callbacks import llm_completion_callback
import os
from typing import Any, Generatorclass MyLLM(CustomLLM):api_key: str = Field(default=os.getenv("API_KEY"))base_url: str = Field(default=os.getenv("BASE_URL"))client: Generation = Field(default=Generation(), exclude=True)model_name: str@propertydef metadata(self) -> LLMMetadata:return LLMMetadata(model_name=self.model_name,context_window=32768,  # 根据模型实际情况设置num_output=512)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:messages = [{'role': "user", 'content': prompt},  # 根据API需求调整]response = self.client.call(api_key=self.api_key,model=self.model_name,messages=messages,result_format='message',)return CompletionResponse(text=response.output.choices[0].message.content)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.call(api_key=self.api_key,model=self.model_name,messages=[{'role': "user", 'content': prompt}],stream=True,)current_text = ""for chunk in response:content = chunk.output.choices[0].delta.get('content', '')current_text += contentyield CompletionResponse(text=current_text, delta=content)# 实例化时使用大写环境变量名
llm = MyLLM(api_key=os.getenv("API_KEY"), base_url=os.getenv("BASE_URL"), model_name='chatglm3-6b'
)

3. 使用 ReActAgent & FunctionTool 构建 Agent

from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgentdef compare_number(a: float, b: float) -> str:"""比较两个数的大小"""if a > b:return f"{a} 大于 {b}"elif a < b:return f"{a} 小于 {b}"else:return f"{a} 等于 {b}"tool = FunctionTool.from_defaults(fn=compare_number)
agent = ReActAgent.from_tools([tool], llm=llm, verbose=True)
response = agent.chat("9.11 和 9.8 哪个大?使用工具计算")
print(response)
> Running step 8c56594a-4edd-4d63-a196-99198df94e12. Step input: 9.11 和 9.8 哪个大?使用工具计算
Observation: Error: Could not parse output. Please follow the thought-action-input format. Try again.
Running step 22bbb997-4b52-4230-8a4d-d8eda252b7d1. Step input: None
Thought: The user is asking to compare the numbers 9.11 and 9.8, and they would like to know which one is greater. I can use the compare_number function to achieve this.
Action: compare_number
Action Input: {'a': 9.11, 'b': 9.8}
Observation: 9.11 小于 9.8
> Running step c6ce4186-3ea7-48c8-8f76-7d219118afc4. Step input: None
Thought: 根据比较结果,9.11小于9.8。
Answer: 9.11 < 9.8
9.11 < 9.8

二、数据库对话 Agent

1. SQLite 数据库

1.1 创建数据库 & 连接
import sqlite3# 连接数据库
conn = sqlite3.connect('mydatabase.db')# 创建游标对象
cursor = conn.cursor()
1.2 创建、插入、查询、更新、删除数据
  • 创建
# create
create_tabel_sql = """CREATE TABLE IF NOT EXISTS employees ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, department TEXT,salary REAL );	"""cursor.execute(create_table_sql)# 提交事务
conn.commit()
  • 插入
insert_sql = "INSERT INTO employees (name, department, salary) VALUES (?, ?, ?)"# insert single
data = ("Alice", "Engineering", 75000.0)
cursor.execute(insert_sql, data)
cursor.commit()# insert many
employees = [("Bob", "Marketing", 68000.0),("Charlie", "Sales", 72000.0)
]
cursor.executemany(insert_sql, employees)
cursor.commit()
  • 查询
# 查询
# 条件查询(按部门筛选) 
cursor.execute("SELECT name, salary FROM employees WHERE department=?", ("Engineering",)) 
engineering_employees = cursor.fetchall() 
print("\nEngineering department:") 
for emp in engineering_employees: print(f"{emp[0]} - ${emp[1]:.2f}")
  • 更新
update_sql = "UPDATE employees SET salary = ? WHERE name = ?"
cursor.execute(update_sql, (8000.0, 'Alice'))
cursor.commit()
  • 删除
delect_sql = "DELECT FROM employees WHERE name = ?"
cursor.execute(delect_sql, ("Bob",))
conn.commit()
1.3 关闭连接
# 关闭游标和连接(释放资源)
cursor.close()
conn.close()
建立数据库

python建立数据库的方法

import sqlite3
# create sql
sqlite_path = "llmdb.db"
# 1. 创建数据库、创建游标对象
conn = sqlite3.connect(sqlite_path)
curosr = conn.cursor()create_sql = """CREATE TABLE `section_stats` (`部门` varchar(100) DEFAULT NULL,`人数` int(11) DEFAULT NULL);"""insert_sql = """INSERT INTO section_stats (部门, 人数)values(?, ?)"""data = [['专利部', 22], ['商务部', 25]]# 2. 创建数据库
cursor.execute(create_sql)
cursor.commit()
# 3. 插入数据
cursor.executemany(insert_sql, data)
cursor.commit()
# 4. 关闭连接
cursor.close()
conn.close()

2. ollama

安装 ollama
- 官网下载安装: [https://ollama.com](https://ollama.com/)
- 模型安装, 如运行 ollama run qwen2.5:7b(出现了success安装成功)- 然后出现 >>> 符号,即对话窗口, 输入 /bye 推出交互页面- 浏览器输入 127.0.0.1:11434, 如果出现 ollama is running,说明端口运行正常
- 环境配置- `OLLAMA_MODELS` & `OLLAMA_HOST` 环境配置1. 创建存储路径,如`mkdir -p ~/programs/ollama/models`2. 编辑环境变量配置路径 `vim ~/.bash_profile #  ~/.zshrc``export OLLAMA_MODELS=~/programs/ollama/models``export OLLAMA_HOST=0.0.0.0:11434`- 确定mac地址和防火墙允许:系统偏好设置 -> 网络 (安全性和隐私-> 防火墙)- 使配置生效`source ~/.bash_profile #  ~/.zshrc`

3. 配置对话 & Embedding 模型

!pip install llama-index-llms-dashscope

三、RAG 接入Agent

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/README.md

在这里插入图片描述

在这里插入图片描述

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/README.md

相关文章:

动手学Agent——Day2

文章目录 一、用 Llama-index 创建 Agent1. 测试模型2. 自定义一个接口类3. 使用 ReActAgent & FunctionTool 构建 Agent 二、数据库对话 Agent1. SQLite 数据库1.1 创建数据库 & 连接1.2 创建、插入、查询、更新、删除数据1.3 关闭连接建立数据库 2. ollama3. 配置对话…...

JSONObject,TreeUtil,EagelMap,BeanUtil使用

目录 JSONObject的使用 TreeUtil的使用 EagleMap使用 安装 application.yml配置 springboot导入依赖 配置信息 简单使用 如果想获取这个json字符串里面的distance的值 BeanUtil拷贝注意 JSONObject的使用 假如我现在要处理这样的json数据 可以直接使用JSONUtil.parseObj…...

Unity嵌入到Winform

Unity嵌入到Winform Winform工程&#x1f308;...

TCP/UDP协议与OSI七层模型的关系解析| HTTPS与HTTP安全性深度思考》

目录 OSI 7层模型每一层包含的协议&#xff1a; TCP和UDP协议&#xff1a; TCP (Transmission Control Protocol)&#xff1a; UDP (User Datagram Protocol)&#xff1a; 数据包流程图 TCP与UDP的区别&#xff1a; 传输层与应用层的关联 传输层和应用层的关联&#xf…...

《Zookeeper 分布式过程协同技术详解》读书笔记-2

目录 zk的一些内部原理和应用请求&#xff0c;事务和标识读写操作事务标识&#xff08;zxid&#xff09; 群首选举Zab协议&#xff08;ZooKeeper Atomic Broadcast protocol&#xff09;文件系统和监听通知机制分布式配置中心, 简单Demojava code 集群管理code 分布式锁 zk的一…...

缺陷检测之图片标注工具--labme

一、labelme简介 Labelme是开源的图像标注工具&#xff0c;常用做检测&#xff0c;分割和分类任务的图像标注。 它的功能很多&#xff0c;包括&#xff1a; 对图像进行多边形&#xff0c;矩形&#xff0c;圆形&#xff0c;多段线&#xff0c;线段&#xff0c;点形式的标注&a…...

机器学习_13 决策树知识总结

决策树是一种直观且强大的机器学习算法&#xff0c;广泛应用于分类和回归任务。它通过树状结构的决策规则来建模数据&#xff0c;易于理解和解释。今天&#xff0c;我们就来深入探讨决策树的原理、实现和应用。 一、决策树的基本概念 1.1 决策树的工作原理 决策树是一种基于…...

请解释一下Standford Alpaca格式、sharegpt数据格式-------deepseek问答记录

1 Standford Alpaca格式 json格式数据。Stanford Alpaca 格式是一种用于训练和评估自然语言处理&#xff08;NLP&#xff09;模型的数据格式&#xff0c;特别是在指令跟随任务中。它由斯坦福大学的研究团队开发&#xff0c;旨在帮助模型理解和执行自然语言指令。以下是该格式的…...

ubuntu 安装管理多版本python3 相关问题解决

背景&#xff1a;使用ubuntu 22.04 默认python 未3.10.编译一些模块的时候发现需要降级到python3.9.于是下载安装 下载&#xff1a; wget https://www.python.org/ftp/python/3.9.16/Python-3.9.16.tgz解压与编译 tar -xf Python-3.9.16.tgz cd Python-3.9.16 ./configure -…...

滑动窗口算法篇:连续子区间与子串问题

1.滑动窗口原理 那么一谈到子区间的问题&#xff0c;我们可能会想到我们可以用我们的前缀和来应用子区间问题&#xff0c;但是这里对于子区间乃至子串问题&#xff0c;我们也可以尝试往滑动窗口的思路方向去进行一个尝试&#xff0c;那么说那么半天&#xff0c;滑动窗口是什么…...

Python爬虫实战:股票分时数据抓取与存储 (1)

在金融数据分析中&#xff0c;股票分时数据是投资者和分析师的重要资源。它能够帮助我们了解股票在交易日内的价格波动情况&#xff0c;从而为交易决策提供依据。然而&#xff0c;获取这些数据往往需要借助专业的金融数据平台&#xff0c;其成本较高。幸运的是&#xff0c;通过…...

【设计模式】【行为型模式】访问者模式(Visitor)

&#x1f44b;hi&#xff0c;我不是一名外包公司的员工&#xff0c;也不会偷吃茶水间的零食&#xff0c;我的梦想是能写高端CRUD &#x1f525; 2025本人正在沉淀中… 博客更新速度 &#x1f44d; 欢迎点赞、收藏、关注&#xff0c;跟上我的更新节奏 &#x1f3b5; 当你的天空突…...

基于实例详解pytest钩子pytest_generate_tests动态生成测试的全过程

关注开源优测不迷路 大数据测试过程、策略及挑战 测试框架原理&#xff0c;构建成功的基石 在自动化测试工作之前&#xff0c;你应该知道的10条建议 在自动化测试中&#xff0c;重要的不是工具 作为一名软件开发人员&#xff0c;你一定深知有效测试策略的重要性&#xff0c;尤其…...

Copilot基于企业PPT模板生成演示文稿

关于copilot创建PPT&#xff0c;咱们写过较多文章了&#xff1a; Copilot for PowerPoint通过文件创建PPT Copilot如何将word文稿一键转为PPT Copilot一键将PDF转为PPT&#xff0c;治好了我的精神内耗 测评Copilot和ChatGPT-4o从PDF创建PPT功能 Copilot for PPT全新功能&a…...

2025百度快排技术分析:模拟点击与发包算法的背后原理

一晃做SEO已经15年了&#xff0c;2025年还有人问我如何做百度快速排名&#xff0c;我能给出的答案就是&#xff1a;做好内容的前提下&#xff0c;多刷刷吧&#xff01;百度的SEO排名算法一直是众多SEO从业者研究的重点&#xff0c;模拟算法、点击算法和发包算法是百度快速排名的…...

七星棋牌全开源修复版源码解析:6端兼容,200种玩法全面支持

本篇文章将详细讲解 七星棋牌修复版源码 的 技术架构、功能实现、二次开发思路、搭建教程 等内容&#xff0c;助您快速掌握该棋牌系统的开发技巧。 1. 七星棋牌源码概述 七星棋牌修复版源码是一款高度自由的 开源棋牌项目&#xff0c;该版本修复了原版中的多个 系统漏洞&#…...

解锁原型模式:Java 中的高效对象创建之道

系列文章目录 后续补充~~~ 文章目录 一、引言1.1 软件开发中的对象创建困境1.2 原型模式的登场 二、原型模式的核心概念2.1 定义与概念2.2 工作原理剖析2.3 与其他创建型模式的差异 三、原型模式的结构与角色3.1 抽象原型角色3.2 具体原型角色3.3 客户端角色3.4 原型管理器角色…...

DeepSeek从入门到精通:揭秘 AI 提示语设计误区与 AI 幻觉(新手避坑指南)

文章目录 引言常见陷阱与应对策略&#xff1a;新手必知的提示词设计误区缺乏迭代陷阱&#xff1a;期待一次性完美结果过度指令与模糊指令陷阱&#xff1a;当细节缺乏重点或意图不明确假设偏见陷阱&#xff1a;当前 AI 只听你想听的幻觉生成陷阱&#xff1a;当AI自信地胡说八道忽…...

Jenkins同一个项目不同分支指定不同JAVA环境

背景 一些系统应用,会为了适配不同的平台,导致不同的分支下用的是不同的gradle,导致需要不同的JAVA环境来编译,比如a分支需要使用JAVA11, b分支使用JAVA17。 但是jenkins上,一般都是Global Tool Configuration 全局所有环境公用一个JAVA_HOME。 尝试过用 Build 的Execut…...

从入门到精通:Postman 实用指南

Postman 是一款超棒的 API 开发工具&#xff0c;能用来测试、调试和管理 API&#xff0c;大大提升开发效率。下面就给大家详细讲讲它的安装、使用方法&#xff0c;再分享些实用技巧。 一、安装 Postman 你能在 Postman 官网&#xff08;https://www.postman.com &#xff09;下…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...