如何选择合适的超参数来训练Bert和TextCNN模型?
选择合适的超参数来训练Bert和TextCNN模型是一个复杂但关键的过程,它会显著影响模型的性能。以下是一些常见的超参数以及选择它们的方法:
1. 与数据处理相关的超参数
最大序列长度(max_length)
- 含义:指输入到Bert模型的文本序列的最大长度。如果设置得太小,可能会截断重要信息;设置得太大,会增加计算量和内存消耗。
- 选择方法
- 统计数据集中文本的长度分布,选择一个能覆盖大部分文本长度的值。例如,可以计算数据集中文本长度的中位数或95%分位数。
- 进行初步实验,尝试不同的
max_length值,观察模型的性能和训练时间,选择性能较好且训练时间可接受的值。
批次大小(batch_size)
- 含义:指每次训练时输入到模型中的样本数量。较大的批次大小可以提高训练的稳定性和效率,但可能会导致内存不足;较小的批次大小可以增加模型的随机性,有助于跳出局部最优解,但训练时间会更长。
- 选择方法
- 首先考虑可用的计算资源(如GPU内存)。如果内存有限,选择较小的批次大小,如16或32;如果内存充足,可以尝试较大的批次大小,如64、128甚至更大。
- 进行不同批次大小的实验,观察模型的收敛速度和泛化能力。一般来说,较大的批次大小在训练初期收敛较快,但可能会导致过拟合;较小的批次大小可能需要更多的训练轮数才能收敛,但泛化能力可能更好。
2. 与Bert模型相关的超参数
学习率(learning_rate)
- 含义:控制模型参数更新的步长。学习率过大,模型可能会跳过最优解,导致无法收敛;学习率过小,模型收敛速度会非常慢。
- 选择方法
- 通常可以从一个中等大小的学习率开始,如
1e-5或2e-5,这是Bert模型微调时常用的学习率。 - 使用学习率调度器(如
ReduceLROnPlateau或CosineAnnealingLR),在训练过程中根据模型的性能动态调整学习率。 - 进行学习率搜索实验,尝试不同的学习率值(如
1e-4、1e-5、1e-6),观察模型在验证集上的性能,选择性能最好的学习率。
- 通常可以从一个中等大小的学习率开始,如
训练轮数(num_epochs)
- 含义:指整个数据集被模型训练的次数。训练轮数太少,模型可能没有充分学习到数据的特征;训练轮数太多,模型可能会过拟合。
- 选择方法
- 可以先进行少量的训练轮数(如5 - 10轮),观察模型在验证集上的性能变化。如果性能还在提升,可以继续增加训练轮数;如果性能开始下降,说明模型可能已经过拟合,需要停止训练。
- 使用早停策略(
Early Stopping),在验证集上的性能连续多个轮次没有提升时,提前停止训练。
3. 与TextCNN模型相关的超参数
滤波器数量(num_filters)
- 含义:指TextCNN模型中每个卷积层的滤波器数量。滤波器数量越多,模型能够提取的特征就越多,但也会增加模型的复杂度和计算量。
- 选择方法
- 可以从一个较小的值开始,如50 - 100,然后逐渐增加,观察模型的性能变化。
- 参考相关研究或类似任务中的经验值,一般在100 - 300之间选择。
滤波器大小(filter_sizes)
- 含义:指TextCNN模型中卷积核的大小。不同的滤波器大小可以捕捉不同长度的文本特征。
- 选择方法
- 常见的滤波器大小组合是[3, 4, 5],这可以捕捉到文本中的3 - 5个连续词的特征。
- 可以尝试不同的滤波器大小组合,如[2, 3, 4]或[4, 5, 6],观察模型的性能。
4. 通用的超参数
优化器
- 含义:用于更新模型参数的算法,常见的优化器有
Adam、SGD等。 - 选择方法
Adam是一种自适应的优化器,通常在大多数任务中表现良好,它结合了动量和自适应学习率的优点。可以优先选择Adam作为优化器。- 如果想要更精细的控制,可以尝试
SGD,并结合动量(momentum)和权重衰减(weight_decay)等参数进行调整。
正则化参数
- 含义:如权重衰减(
weight_decay),用于防止模型过拟合。 - 选择方法
- 可以从一个较小的值开始,如
1e-4或1e-5,然后逐渐调整,观察模型在验证集上的性能。
- 可以从一个较小的值开始,如
超参数调优方法
- 网格搜索(Grid Search):定义一个超参数的取值范围,然后对所有可能的组合进行训练和评估,选择性能最好的组合。这种方法简单直观,但计算量较大。
- 随机搜索(Random Search):在超参数的取值范围内随机选择组合进行训练和评估,比网格搜索更高效,尤其是在超参数空间较大时。
- 贝叶斯优化(Bayesian Optimization):利用贝叶斯定理,根据之前的实验结果来预测下一组可能的超参数组合,以提高搜索效率。可以使用
Hyperopt等库来实现。
相关文章:
如何选择合适的超参数来训练Bert和TextCNN模型?
选择合适的超参数来训练Bert和TextCNN模型是一个复杂但关键的过程,它会显著影响模型的性能。以下是一些常见的超参数以及选择它们的方法: 1. 与数据处理相关的超参数 最大序列长度(max_length) 含义:指输入到Bert模…...
C# SpinLock 类 使用详解
总目录 前言 SpinLock 是 C# 中一种轻量级的自旋锁,属于 System.Threading 命名空间,专为极短时间锁竞争的高性能场景设计。它通过忙等待(自旋)而非阻塞线程来减少上下文切换开销,适用于锁持有时间极短(如…...
【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题
【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题 【承接商业广告,如需商业合作请+v17740568442】 文章目录 【linux】在 Linux 上部署 DeepSeek-r1:32/70b:解决下载中断问题问题描述:解决方法方法一:手动中断并重启下载方法二:使用 Bash 脚本自动化下载在…...
机器学习所需要的数学知识【01】
总览 导数 行列式 偏导数 概理论 凸优化-梯度下降 kkt条件...
4.【线性代数】——矩阵的LU分解
四 矩阵的LU分解 1. AB的逆矩阵2. 转置矩阵3. ALU3.1 2x2矩阵3.2 3x3矩阵3.3 nxn的矩阵分解的次数? 1. AB的逆矩阵 { ( A B ) ( B − 1 A − 1 ) I ( B − 1 A − 1 ) ( A B ) I ⇒ ( A B ) − 1 B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) I\\ (B^{-1}A^…...
【清晰教程】本地部署DeepSeek-r1模型
【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面-CSDN博客 目录 Ollama 安装Ollama DeepSeek-r1模型 安装DeepSeek-r1模型 Ollama Ollama 是一个开源工具,专注于简化大型语言模型(LLMs)的本地部署和管理。它允许用户在本地计算机…...
Spring Cloud工程搭建
目录 工程搭建 搭建父子工程 创建父工程 Spring Cloud版本 创建子项目-订单服务 声明项⽬依赖 和 项⽬构建插件 创建子项目-商品服务 声明项⽬依赖 和 项⽬构建插件 工程搭建 因为拆分成了微服务,所以要拆分出多个项目,但是IDEA只能一个窗口有一…...
使用Redis实现分布式锁,基于原本单体系统进行业务改造
一、单体系统下,使用锁机制实现秒杀功能,并限制一人一单功能 1.流程图: 2.代码实现: Service public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderSe…...
【MediaTek】 T750 openwrt-23.05编 cannot find dependency libexpat for libmesode
MediaTek T750 T750 采用先进的 7nm 制程,高度集成 5G 调制解调器和四核 Arm CPU,提供较强的功能和配置,设备制造商得以打造精巧的高性能 CPE 产品,如固定无线接入(FWA)路由器和移动热点。 MediaTek T750 平台是一款综合的芯片组,集成了 5G SoC MT6890、12nm 制程…...
CHARMM-GUI EnzyDocker: 一个基于网络的用于酶中多个反应状态的蛋白质 - 配体对接的计算平台
❝ "CHARMM-GUI EnzyDocker for Protein−Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes"介绍了 CHARMM-GUI EnzyDocker,这是一个基于网络的计算平台,旨在简化和加速 EnzyDock 对接模拟的设置过程&…...
c# 2025/2/17 周一
16. 《表达式,语句详解4》 20 未完。。 表达式,语句详解_4_哔哩哔哩_bilibili...
vite【详解】常用配置 vite.config.js / vite.config.ts
官网 https://cn.vitejs.dev/guide/ vite 常用配置 Vite 配置文件通常是 vite.config.js (使用 CommonJS 语法)或者 vite.config.ts(使用 TypeScript 语法),默认内容为 import { defineConfig } from vite import vue…...
最新智能优化算法: 阿尔法进化(Alpha Evolution,AE)算法求解23个经典函数测试集,MATLAB代码
一、阿尔法进化算法 阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。以下是AE算法的主要步骤和特点: 主…...
用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究
论文标题 中文标题:用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究 英文标题:5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability 作者信息 …...
HaProxy源码安装(Rocky8)
haproxy具有高性能、高可用性、灵活的负载均衡策略和强大的将恐和日志功能,是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件,是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器,支持基于cookie的持久性&a…...
shell脚本备份MySQL数据库和库下表
目录 注意: 一.脚本内容 二.执行效果 三.创建定时任务 注意: 以下为对MySQL5.7.42版本数据库备份shell脚本参考运行备份的机器请确认mysqldump版本>5.7,否则备份参数--set-gtid-purgedOFF无效,考虑到一般数据库节点和备份…...
23. AI-大语言模型
文章目录 前言一、LLM1. 简介2. 工作原理和结构3. 应用场景4. 最新研究进展5. 比较 二、Transformer架构1. 简介2. 基本原理和结构3. 应用场景4. 最新进展 三、开源1. 开源概念2. 开源模式3. 模型权重 四、再谈DeepSeek 前言 AI 一、LLM LLM(Large Language Mod…...
Linux /dev/null
/dev/null 是 Linux 和类 Unix 系统中一个特殊且非常有用的设备文件,也被称为空设备。下面为你详细介绍它的特点、用途和使用示例。 特点 写入丢弃:当向 /dev/null 写入数据时,这些数据会被立即丢弃,不会被保存到任何地方&#…...
Unity CommandBuffer绘制粒子系统网格显示
CommandBuffer是 Unity 提供的一种在渲染流程中插入自定义渲染命令的机制。在渲染粒子系统时,常规的渲染流程可能无法满足特定的渲染需求,而CommandBuffer允许开发者灵活地设置渲染参数、控制渲染顺序以及执行自定义的绘制操作。通过它,可以精…...
Java延时定时刷新Redis缓存
延时定时刷新Redis缓存 一、背景 项目需求:订阅接收一批实时数据,每分钟最高可接收120万条数据,并且分别更新到redis和数据库中;而用户请求查询消息只是低频操作。资源限制:由于项目预算有限,只有4台4C16…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
