当前位置: 首页 > news >正文

计算机视觉+Numpy和OpenCV入门

Day 1:Python基础+Numpy和OpenCV入门

  1. Python基础

    • 变量与数据类型、函数与类的定义、列表与字典操作
    • 文件读写操作(读写图像和数据文件)

    练习任务:写一个Python脚本,读取一个图像并保存灰度图像。

    import cv2
    img = cv2.imread('image.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    cv2.imwrite('gray_image.jpg', gray)
  2. Numpy基础

    • 数组创建与索引
    • 矩阵运算(矩阵乘法、转置、逆矩阵计算)

    练习任务:利用Numpy生成一个随机矩阵,计算其特征值和特征向量。

读取一个图像并保存灰度图像。

# 练习任务:写一个Python脚本,读取一个图像并保存灰度图像。
# 1. 读取图像
# 2. 将图像转换为灰度图像
# 3. 保存灰度图像
# 提示:使用OpenCV库
# 4. 保存灰度图像
# 提示:使用OpenCV库
# 5. 显示原始图像和灰度图像
# 提示:使用matplotlib库
# 6. 保存原始图像和灰度图像
# 提示:使用matplotlib库import cv2
import matplotlib.pyplot as plt
import numpy as np# 读取图像
img = cv2.imread('cat.jpg')# 将图像转换为灰度图像
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 保存灰度图像
cv2.imwrite('gray_cat.jpg', gray_img)# 显示原始图像和灰度图像
plt.subplot(1, 2, 1)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('Original Image')
plt.axis('off')plt.subplot(1, 2, 2)
plt.imshow(gray_img, cmap='gray')
plt.title('Gray Image')
plt.axis('off')plt.show()# 保存原始图像和灰度图像
plt.imsave('original_cat.jpg', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.imsave('gray_cat.jpg', gray_img, cmap='gray')

Numpy基础

# 20250210
#Numpy基础
# - 数组创建与索引
# - 矩阵运算(矩阵乘法、转置、逆矩阵计算)# > 练习任务:利用Numpy生成一个随机矩阵,计算其特征值和特征向量。
# 1. 生成一个3x3的随机矩阵
# 2. 计算矩阵的特征值和特征向量
# 3. 打印特征值和特征向量
# 提示:使用Numpy库import numpy as np# 创建一个包含5个元素的一维数组
arr1 = np.array([1, 2, 3, 4, 5])
print(arr1)
# [1 2 3 4 5]# 创建一个包含3x3个元素的二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr2)
# [[1 2 3] 
#  [4 5 6] 
#  [7 8 9]]# 创建一个包含3x3个元素的随机矩阵
arr3 = np.random.rand(3, 3)
print(arr3)
# [[0.43466011 0.11696293 0.08589901]
#  [0.43506184 0.96955457 0.94011666]
#  [0.0907567  0.71107309 0.2533223 ]]print(arr1[0])  # 访问数组的第一个元素
print(arr2[1, 2])  # 访问第二行第三列的元素
print(arr3[0, 0])  # 访问随机矩阵的第一个元素
# 1
# 6
# 0.434660114961665# 矩阵运算(矩阵乘法、转置、逆矩阵计算)# 创建两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])# 矩阵乘法
result = np.dot(A, B)
print(result)
# [[19 22]
#  [43 50]]# 矩阵转置
A_transpose = A.T
print(A_transpose)
# [[1 3]
#  [2 4]]# 逆矩阵计算
A_inv = np.linalg.inv(A)
print(A_inv)
# [[-2.   1. ]
#  [ 1.5 -0.5]]# 计算矩阵的特征值和特征向量
A = np.array([[4, -2], [1, 1]])
eigenvalues, eigenvectors = np.linalg.eig(A)
print('特征值:', eigenvalues)
print('特征向量:', eigenvectors)
# 特征值: [3. 2.]
# 特征向量: 
#  [[0.89442719 0.70710678]
#  [-0.4472136  0.70710678]]# 总结
# Numpy数组创建与索引:通过 np.array() 创建数组,可以进行索引操作获取特定的元素。
# 矩阵运算:
# 矩阵乘法使用 np.dot() 或 @;
# 矩阵转置使用 .T;
# 矩阵的逆使用 np.linalg.inv()。
# 特征值与特征向量:通过 np.linalg.eig() 可以计算矩阵的特征值和特征向量。

相关文章:

计算机视觉+Numpy和OpenCV入门

Day 1:Python基础Numpy和OpenCV入门 Python基础 变量与数据类型、函数与类的定义、列表与字典操作文件读写操作(读写图像和数据文件) 练习任务:写一个Python脚本,读取一个图像并保存灰度图像。 import cv2 img cv2.im…...

Vue 3 工程化打包工具:从理论到实践 (下篇)

引言 在前端开发中,打包工具是工程化的重要组成部分。Vue 3 作为当前流行的前端框架,其工程化离不开高效的打包工具。打包工具不仅能够将代码、样式、图片等资源进行优化和压缩,还能通过模块化、代码分割等功能提升应用的性能。本文将深入探…...

java经验快速学习python!

title: java经验快速学习python! date: 2025-02-19 01:52:05 tags: python学习路线 java经验快速学习python! 本篇文档会一直更新!!!变量、分支结构、循环结构、数据结构【列表、元组、集合字典】python常用内置函数元…...

爬虫破解网页禁止F12

右击页面显示如下 先点击f12再输入网址,回车后没有加载任何数据 目前的一种解决方法: 先 AltD ,再 CtrlShifti...

从零开始构建一个语言模型中vocab_size(词汇表大小)的设定规则

从零开始构建一个语言模型就要设计一个模型框架,其中要配置很多参数。在自然语言处理任务中,vocab_size(词汇表大小) 的设定是模型设计的关键参数之一,它直接影响模型的输入输出结构、计算效率和内存消耗。 本文是在我前文的基础上讲解的:从零开始构建一个小型字符级语言…...

Jenkins插件管理切换国内源地址

安装Jenkins 插件时,由于访问不了国外的插件地址,会导致基本插件都安装失败。 不用着急,等全部安装失败后,进入系统,修改插件源地址,重启后在安装所需插件。 替换国内插件更新地址 选择:系统…...

Q - learning 算法是什么

Q - learning 算法是什么 Q - learning 算法是一种经典的无模型强化学习算法,由克里斯沃特金斯(Chris Watkins)在 1989 年提出。它被广泛应用于解决各种决策问题,尤其适用于智能体在环境中通过与环境交互来学习最优策略的场景。下面从基本概念、核心公式、算法流程和特点几…...

nasm - console 32bits

文章目录 nasm - console 32bits概述笔记my_build.batnasm_main.asm用VS2019写个程序,按照win32方式编译,比较一下。备注END nasm - console 32bits 概述 看到一个nasm的例子(用nasm实现一个32bits控制台的程序架子) 学习一下 笔记 my_build.bat ec…...

11.编写前端内容|vscode链接Linux|html|css|js(C++)

vscode链接服务器 安装VScode插件 Chinese (Simplified) (简体中⽂) Language Pack for Visual Studio CodeOpen in BrowserRemote SSH 在命令行输入 remote-ssh接着输入 打开配置文件,已经配置好主机 点击远程资源管理器可以找到 右键链接 输入密码 …...

【deepseek-r1模型】linux部署deepseek

1、快速安装 Ollama 下载:Download Ollama on macOS Ollama 官方主页:https://ollama.com Ollama 官方 GitHub 源代码仓库:https://github.com/ollama/ollama/ 官网提供了一条命令行快速安装的方法。 (1)下载Olla…...

【Github每日推荐】-- 2024 年项目汇总

1、AI 技术 项目简述OmniParser一款基于纯视觉的 GUI 智能体,能够准确识别界面上可交互图标以及理解截图中各元素语义,实现自动化界面交互场景,如自动化测试、自动化操作等。ChatTTS一款专门为对话场景设计的语音生成模型,主要用…...

C++中的.*运算符

看运算符重载的时候,看到这一句 .* :: sizeof ?: . 注意以上5个运算符不能重载。 :: sizeof ?: . 这四个好理解,毕竟都学过,但.*是什么? 于是自己整理了一下 .* 是一种 C 中的运算符,称为指针到成…...

深度学习笔记——LSTM

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的LSTM知识点。 文章目录 LSTM(Long Short-Term Memory)LSTM 的核心部件LSTM 的公式和工作原理(1) 遗忘门&a…...

spring boot知识点2

1.spring boot 要开启一些特性,可通过什么方式开启 a.通过Enable注解,可启动定时服务 b.通过application.properties可设置端口号等地址信息 2.什么是热部署,以及spring boot通过什么方式进行热部署 热部署这个概念,我知道。就…...

【机器学习】CNN与Transformer的表面区别与本质区别

仅供参考 表面区别 1. 结构和原理: CNN:主要通过卷积层来提取特征,这些层通过滑动窗口(卷积核)捕捉局部特征,并通过池化层(如最大池化)来降低特征的空间维度。CNN非常适合处理具有网格状拓扑结构的数据,如图像。Transformer:基于自注意力(Self-Attention)机制,能…...

框架篇 - Hearth ArcGIS 框架扩展(DryIoC、Options、Nlog...)

框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog…) 文章目录 框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog...)1 使用IoC、DI1.1 服务注册1.1.1 `ServiceAttribute`服务特性1.2 依赖注入1.2.1 SDK底层创建实例类型依赖注入1.2.2 `In…...

JUC并发—7.AQS源码分析三

大纲 1.等待多线程完成的CountDownLatch介绍 2.CountDownLatch.await()方法源码 3.CountDownLatch.coutDown()方法源码 4.CountDownLatch总结 5.控制并发线程数的Semaphore介绍 6.Semaphore的令牌获取过程 7.Semaphore的令牌释放过程 8.同步屏障CyclicBarrier介绍 9.C…...

windows系统本地部署DeepSeek-R1全流程指南:Ollama+Docker+OpenWebUI

本文将手把手教您使用OllamaDockerOpenWebUI三件套在本地部署DeepSeek-R1大语言模型,实现私有化AI服务搭建。 一、环境准备 1.1 硬件要求 CPU:推荐Intel i7及以上(需支持AVX2指令集) 内存:最低16GB,推荐…...

当C#邂逅Deepseek, 或.net界面集成deepseek

最近,我开发了一个C#界面,并集成了Deepseek的接口功能,实现了本地化部署和流模式读取。 过程充满了挑战和乐趣,也让我深刻体会到Deepseek的强大之处。今天,我想和大家分享这段经历,希望能激发你对Deepseek的…...

Cursor实战:Web版背单词应用开发演示

Cursor实战:Web版背单词应用开发演示 需求分析自行编写需求文档借助Cursor生成需求文档 前端UI设计后端开发项目结构环境参数数据库设计安装Python依赖运行应用 前端代码修改测试前端界面 测试数据生成功能测试Bug修复 总结 在上一篇《Cursor AI编程助手不完全指南》…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

LangFlow技术架构分析

🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...