当前位置: 首页 > news >正文

SpringMVC重定向接口,参数暴露在url中解决方案!RedirectAttributes

OK,首先描述下业务场景,终端数量限制登录

1.首先访问项目login的get接口

2.输入账号密码点击登录后,会请求login的POST接口

3.后台对终端数量逻辑处理不允许登录跳回到登录页面

4.因代码原因需在后台进行多次重定向接口,最后跳转静态jsp页面

        在a接口中携带参数重定向到b接口中,b接口重定向到登录的jsp页面

        但是会发现,跳转到jsp页面后a接口携带的参数拼接到了url中,实际是因为重定向接口实际也是相当于是发送了一次请求,所以才会出现到地址栏中!

话不多说直接上原因:spring MVC框架controller间跳转,需重定向,会将modelAndView中放置的属性值,拼接到重定向url后导致。

解决方案

        a接口的接口参数中添加RedirectAttributes并且在return前ra.addFlashAttribute("key","value");这个不影响return ModelAndView!

        测试发现参数不会再暴露在url中,并且在jsp页面中可以获取到参数,并且在第一次携带参数后b接口跳转jsp页面前的接口使用@ModelAttribute可以成功接收,再次刷新页面请求b接口,发现参数获取不到,已被清除!


下面是AI对于RedirectAttributes的解释:

RedirectAttributes.addFlashAttribute的值生命周期主要涉及以下几个方面:
一、值的存储与传递

当使用RedirectAttributes.addFlashAttribute("参数","值")方法时,指定的参数和值会被存储起来,以便在重定向后的请求中访问。这个存储过程并不是简单地将参数拼接到重定向的URL上,而是利用了session来暂时保存这些数据。
二、值的生命周期

    存储阶段:在调用addFlashAttribute方法时,参数和值被添加到FlashMap中,FlashMap随后被存储到session中。
    传递阶段:当执行重定向时,Spring MVC会从session中检索出FlashMap,并将其中的参数和值添加到重定向目标请求的模型中。这样,在重定向后的请求处理中,就可以通过模型访问到这些参数了。
    移除阶段:一旦参数和值被添加到重定向目标请求的模型中,它们就会从session中的FlashMap中移除。这意味着,如果用户在重定向后的页面上刷新页面或进行其他操作,这些参数将不再可用。
    
三、注意事项

    安全性:由于addFlashAttribute方法将参数存储在session中,因此相对于将参数直接拼接到URL上(使用addAttribute方法)来说,它更加安全。因为URL上的参数可能会被恶意用户篡改或窃取。
    使用场景:addFlashAttribute方法适用于需要在重定向后传递敏感信息或需要在页面上显示一次性消息(如成功或错误消息)的场景。
    限制:由于参数和值在重定向后被从session中移除,因此它们无法在重定向后的控制器方法中直接通过@RequestParam注解获取。如果需要在控制器方法中访问这些参数,可以考虑使用其他方法(如通过模型传递或使用@ModelAttribute注解)。

综上所述,RedirectAttributes.addFlashAttribute的值生命周期包括存储、传递和移除三个阶段。在这个过程中,参数和值被安全地存储在session中,并在重定向后的请求中传递和移除。

相关文章:

SpringMVC重定向接口,参数暴露在url中解决方案!RedirectAttributes

OK,首先描述下业务场景,终端数量限制登录 1.首先访问项目login的get接口 2.输入账号密码点击登录后,会请求login的POST接口 3.后台对终端数量逻辑处理不允许登录跳回到登录页面 4.因代码原因需在后台进行多次重定向接口,最后跳…...

硬件学习笔记--46 电能表影响量试验梳理

目录 1.电流和电压电路中的谐波影响试验 1)电流和电压电路中谐波——第5次谐波试验 2)电流和电压电路中谐波——方顶波波形试验 3)​​​​​​​电流和电压电路中谐波——尖顶波波形试验 4)​​​​​​​电流和电压电路中谐…...

大数据技术之HBase操作归纳

HBase基本命令总结表(实际操作方式) 进入Hbase:hbase shell 方式一:命令行窗口来操作HBase 1.通用性命令 version 版本信息 status 查看集群当前状态 whoami 查看登入者身份 help 帮助2.HBase DDL操作(对象级操作) 2.1、namespace命名空间(相当…...

后端Java Stream数据流的使用=>代替for循环

API讲解 对比 示例代码对比 for循环遍历 package cn.ryanfan.platformback.service.impl;import cn.ryanfan.platformback.entity.Algorithm; import cn.ryanfan.platformback.entity.AlgorithmCategory; import cn.ryanfan.platformback.entity.DTO.AlgorithmInfoDTO; im…...

遗传算法与深度学习实战系列,自动调优深度神经网络和机器学习的超参数

遗传算法与深度学习实战系列文章 目录 进化深度学习生命模拟及其应用生命模拟与进化论遗传算法中常用遗传算子遗传算法框架DEAPDEAP框架初体验使用遗传算法解决N皇后问题使用遗传算法解决旅行商问题使用遗传算法重建图像遗传编程详解与实现粒子群优化详解与实现协同进化详解与…...

体验用ai做了个python小游戏

体验用ai做了个python小游戏 写在前面使用的工具2.增加功能1.要求增加视频作为背景。2.我让增加了一个欢迎页面。3.我发现中文显示有问题。4.我提出了背景修改意见,欢迎页面和结束页面背景是视频,游戏页面背景是静态图片。5.提出增加更多游戏元素。 总结…...

谷粒商城—分布式高级②.md

认证服务 1. 环境搭建 创建gulimall-auth-server模块,导依赖,引入login.html和reg.html,并把静态资源放到nginx的static目录下 2. 注册功能 (1) 验证码倒计时 //点击发送验证码按钮触发下面函数 $("#sendCode").click(function () {//如果有disabled,说明最近…...

阿里云ECS命名规则解析与规格选型实战指南

阿里云ECS实例的命名规则通常采用 “ecs.{实例族}.{规格大小}” 的结构,各部分含义如下: 命名字段说明ecs代表“弹性计算服务”(Elastic Compute Service)。{实例族}标识实例的用途和代次(如 g7、c7、r7),由字母+数字组成。{规格大小}表示实例的资源配置(如 large、2xl…...

Spring MVC 的核心以及执行流程

Spring MVC的核心 Spring MVC是Spring框架中的一个重要模块,它采用了经典的MVC(Model-View-Controller)设计模式。 MVC是一种软件架构的思想,它将软件按照模型(Model)、视图(View)…...

ai json处理提示词

在解析JSON数据时,提示词的设计需要明确任务目标、输入格式以及期望的输出格式。以下是一些常用的提示词示例,适用于不同的JSON解析场景: 1. 提取特定字段 用于从JSON中提取特定字段的值。 示例: 从以下JSON数据中提…...

2025开源数据工程全景图

作者 | Alireza Sadeghi 译自Practical Data Engineering 2025年开源数据工程领域呈现蓬勃创新与生态重构的双重态势,九大技术赛道在实时化、轻量化与云原生架构驱动下加速演进。一份来自外网的2025年开源数据工程全景图全面地展示了这一领域的发展态势与走向&…...

438. 找到字符串中所有字母异位词(LeetCode 热题 100)

题目来源: 438. 找到字符串中所有字母异位词 - 力扣(LeetCode) 题目内容: 给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 示例 1: 输入: s &…...

c++标准io与线程,互斥锁

封装一个 File 类, 用有私有成员 File* fp 实现以下功能 File f "文件名" 要求打开该文件 f.write(string str) 要求将str数据写入文件中 string str f.read(int size) 从文件中读取最多size个字节, 并将读取到的数据返回 析构函数 #…...

java简单实现请求deepseek

1.deepseek的api创建 deepseek官网链接 点击右上API开放平台后找到API keys 创建APIkey&#xff1a; 注意&#xff1a;创建好的apikey只能在创建时可以复制&#xff0c;要保存好 2.java实现请求deepseek 使用springbootmaven 2.1 pom文件&#xff1a; <?xml version&…...

Ext系列文件系统 -- 磁盘结构,磁盘分区,inode,ext文件系统,软硬链接

目录 1.理解硬盘 1.1 磁盘、服务器、机柜、机房 1.2 磁盘物理结构 1.3 磁盘的存储结构 1.4 磁盘的逻辑结构 1.4.1 理解逻辑结构 1.4.2 真实过程 1.5 CHS地址和LBA地址的相互转换 2.引入文件系统 2.1 “块”概念 2.2 “分区”概念 2.3 “inode”概念 3.ext2文件系…...

PyTorch Tensor 形状变化操作详解

PyTorch Tensor 形状变化操作详解 在深度学习中&#xff0c;Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状&#xff0c;以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作&#xff0…...

文字识别软件cnocr学习笔记

• 安装 pip install cnocr • 基础的使用方法 首次运行会下载安装模型&#xff0c;如果没有梯子&#xff0c;会报错&#xff1a; 在网络上查找cnocr的模型资源&#xff0c;并下载到本地。https://download.csdn.net/download/qq_33464428/89514689?ops_request_misc%257B%2…...

本地部署DeepSeek R1 + 界面可视化open-webui【ollama容器+open-webui容器】

本地部署DeepSeek R1 界面可视化open-webui 本文主要讲述如何用ollama镜像和open-webui镜像部署DeepSeek R1&#xff0c; 镜像比较方便我们在各个机器之间快速部署。 显卡推荐 模型版本CPU内存GPU显卡推荐1.5B4核8GB非必需4GBRTX1650、RTX20607B、8B8核16GB8GBRTX3070、RTX…...

macOS部署DeepSeek-r1

好奇&#xff0c;跟着网友们的操作试了一下 网上方案很多&#xff0c;主要参考的是这篇 DeepSeek 接入 PyCharm&#xff0c;轻松助力编程_pycharm deepseek-CSDN博客 方案是&#xff1a;PyCharm CodeGPT插件 DeepSeek-r1:1.5b 假设已经安装好了PyCharm PyCharm: the Pyth…...

基于STM32与BD623x的电机控制实战——从零搭建无人机/机器人驱动系统

系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 一、为什么选择这两个芯片&#xff1f;1.1 STM32微控制器1.2 ROHM BD623x电机驱动 二、核心控制原理详解2.1 H桥驱动奥…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...