当前位置: 首页 > news >正文

大模型知识蒸馏技术(5)——在线蒸馏


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

1. 在线蒸馏概述

在线蒸馏是一种知识蒸馏方式,其核心特点是教师模型和学生模型的参数在训练过程中同时更新,整个蒸馏框架是端到端训练的。这种方式允许教师模型和学生模型相互影响、共同学习,能够更高效地实现知识迁移,动态适应数据变化和任务需求。

  • 交互紧密:教师模型和学生模型之间的交互更加紧密,能够更好地适应学生模型的学习需求,实现高效的动态知识迁移。例如在多智能体系统中,多个智能体(模型)可以同时学习并相互协作,共同提升性能。
  • 适应性强:能够更好地适应动态变化的学习任务和数据环境,对于多任务学习、多模态学习等场景具有很大优势。比如在多任务学习中,教师模型可以根据不同任务的特点和学生模型在各个任务上的表现,灵活调整知识传递的内容和方式。
  • 训练过程:在在线蒸馏中,教师模型和学生模型通常共享部分网络结构,例如共享前几层的卷积层。在训练过程中,教师模型和学生模型的参数会同时更新。以图像分类任务为例,教师模型和学生模型共享前两层卷积层,然后分别在后续层中进行独立的特征提取和分类。这种方式使得教师模型能够根据学生模型的学习情况动态调整,从而提高知识传递的效率。
  • 训练复杂:训练过程相对复杂,需要同时优化多个模型的参数,可能导致训练时间增加。例如在大规模数据集上进行在线蒸馏训练时,计算资源消耗较大,训练周期较长。
  • 同质化风险:教师模型和学生模型在训练过程中高度同质化,可能导致模型崩溃。例如在某些情况下,如果教师模型和学生模型的结构过于相似,且训练过程中缺乏足够的正则化手段,可能会导致模型的参数逐渐趋同,最终影响模型的性能。
  • 依赖数据增强:对数据增强策略的依赖较强,需要通过合适的数据增强方法来增加模型的泛化能力和多样性,否则可能会影响蒸馏效果。

2. 训练过程

2.1 网络结构共享

在线蒸馏中,教师模型和学生模型通常共享部分网络结构,这种结构共享是实现高效知识迁移的重要

相关文章:

大模型知识蒸馏技术(5)——在线蒸馏

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl1. 在线蒸馏概述 在线蒸馏是一种知识蒸馏方式,其核心特点是教师模型和学生模型的参数在训练过程中同时更新,整个蒸馏框架是端到端训练的。这种方式允许教师模型和学生模型相互影响、共同学习,能…...

Java 条件语句

Java 条件语句概述 条件语句通过判断给定条件的真假来控制程序的执行。本小节将详细介绍 Java 中各类条件语句。 1. if 语句 1.1 语法 用于根据给定条件决定是否执行一段代码。if 块仅在关联的布尔表达式为 true 时执行。 if (条件) {// 当条件成立时执行此处代码 }大括号…...

用JMeter给要登录的操作做压力测试

压力测试的http请求路径如下图 应当添加http Header Manager,设置登录凭证...

算法的数学基础

组合数 从n个不同元素中取出m(m≤n)个不同元素的所有组合的个数:C(n, m) n! / [m!(n - m)!]n个物品所有可能的组合数(不考虑组合的大小m):Σ C(n, m) C(n, 0) C(n, 1) C(n, 2) … C(n, n) 2 n 2^n 2…...

flowable适配达梦数据库

文章目录 适配相关问题无法从数据库产品名称“DM DBMS”中推断数据库类型分析解决 构建ibatis SqlSessionFactory时出错:inStream参数为null分析解决 liquibase相关问题问题一:不支持的数据库 Error executing SQL call current_schema: 无法解析的成员访…...

VScode C语言学习开发环境;运行提示“#Include错误,无法打开源文件stdio.h”

C/C环境配置 参考: VS Code 配置 C/C 编程运行环境(保姆级教程)_vscode配置c环境-CSDN博客 基本步骤 - 安装MinGW-W64,其包含 GCC 编译器:bin目录添加到环境变量;CMD 中输入gcc --version或where gcc验证…...

DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地

对于个人开发者或尝鲜者而言,本地想要部署 DeepSeek 有很多种方案,但是一旦涉及到企业级部署,则步骤将会繁琐很多。 比如我们的第一步就需要先根据实际业务场景评估出我们到底需要部署什么规格的模型,以及我们所要部署的模型&…...

自制简单的图片查看器(python)

图片格式:支持常见的图片格式(JPG、PNG、BMP、GIF)。 import os import tkinter as tk from tkinter import filedialog, messagebox from PIL import Image, ImageTkclass ImageViewer:def __init__(self, root):self.root rootself.root.…...

RD-搭建测试环境

测试团队职责 环境验证:确保开发部署的测试环境可访问,页面/接口无阻塞问题; 配置检查**:核对数据库连接、接口域名、HT证书等关键配置; 数据准备**:导入基线数据,隔离测试与生产数据&#xff1…...

从零搭建微服务项目Base(第5章——SpringBoot项目LogBack日志配置+Feign使用)

前言: 本章主要在原有项目上添加了日志配置,对SpringBoot默认的logback的配置进行了自定义修改,并详细阐述了xml文件配置要点(只对日志配置感兴趣的小伙伴可选择直接跳到第三节),并使用Feign代替原有RestT…...

【深度学习】使用飞桨paddle实现波士顿房价预测任务

使用飞桨实现波士顿房价预测任务 由于开始学习深度学习,因此每次开始都熟悉一下深度学习模型的基本步骤: 在之前的学习中,我们学习了使用Python和NumPy实现波士顿房价预测任务的方法,本章我们将尝试使用飞桨paddle重写房价预测任…...

钉钉多维表:数据管理与协作的新篇章

在当今数字化时代,数据的高效管理和团队协作已成为企业竞争力的关键因素之一。钉钉多维表,作为一款基于钉钉平台的数据协作管理工具,正以其独特的功能和优势,引领着数据管理与协作的新潮流。本文将为您全面解析钉钉多维表的定义、特点、功能亮点、应用场景以及如何使用,让您轻松…...

高级推理的多样化推理与验证

25年2月来自波士顿大学、NotBadMath.AI、谷歌、哥伦比亚大学、MIT、Intuit公司和斯坦福大学的论文“Diverse Inference and Verification for Advanced Reasoning”。 OpenAI o1、o3 和 DeepSeek R1 等推理 LLM 在数学和编码方面取得重大进展,但仍发现 IMO 组合问题…...

深入理解 MySQL 8 C++ 源码:SELECT MOD(MONTH(NOW()), 2) 的函数执行过程

MySQL 作为最流行的关系型数据库之一,其内部实现机制一直是开发者探索的热点。本文将以一条简单的 SQL 查询 SELECT MOD(MONTH(NOW()), 2) 为例,深入分析 MySQL 8 源码中内置函数 MOD、MONTH 和 NOW 的执行过程,揭示其底层实现逻辑。 一、SQL…...

【算法系列】leetcode1419 数青蛙 --模拟

一、题目 二、思路 模拟⻘蛙的叫声。 当遇到 r o a k 这四个字符的时候,我们要去看看每⼀个字符对应的前驱字符,有没有⻘蛙叫出来。如果有⻘蛙叫出来,那就让这个⻘蛙接下来喊出来这个字符;如果没有则为异常字符串,直接…...

蓝桥杯 Java B 组之背包问题、最长递增子序列(LIS)

Day 4:背包问题、最长递增子序列(LIS) 📖 一、动态规划(Dynamic Programming)简介 动态规划是一种通过将复杂问题分解成更小的子问题来解决问题的算法设计思想。它主要用于解决具有最优子结构和重叠子问题…...

Git如何将一个分支的内容同步到另一个分支

在 Git 中,可以通过多种方法将一个分支的内容同步到另一个分支。以下是几种常用的方法: 1. 使用 merge 命令 这是最常见的方法,将一个分支的更改合并到另一个分支。 # 切换到目标分支 git checkout target-branch# 合并源分支的内容 git m…...

[C#]C# winform部署yolov12目标检测的onnx模型

yolov12官方框架:github.com/sunsmarterjie/yolov12 【测试环境】 vs2019 netframework4.7.2 opencvsharp4.8.0 onnxruntime1.16.3 【效果展示】 【调用代码】 using System; using System.Collections.Generic; using System.ComponentModel; using System.…...

51c大模型~合集69

我自己的原文哦~ https://blog.51cto.com/whaosoft/12221979 #7项基于SAM万物分割模型研究工作 1、CC-SAM: SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation #ECCV2024 #SAM #图像分割 #医学图像 Segment Anything Model (SAM) 在自…...

2025寒假周报4

2025寒假天梯训练7-CSDN博客 眨眼间寒假训练就告一段落了,准备回校继续战斗了。这周练了3场OI赛制的篮球杯,感觉非常糟糕,不像天梯赛,天梯赛打起来非常舒适顺畅,一直都不喜欢OI赛制,打着非常不稳定..还需要…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 ​ 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

uniapp中使用aixos 报错

问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...