进程概念、PCB及进程查看
文章目录
- 一.进程的概念
- 进程控制块(PCB)
- 二.进程查看
- 通过指令查看进程
- 通过proc目录查看
- 进程的`cwd`和`exe`
- 获取进程pid和ppid
- 通过fork()创建子进程
一.进程的概念
进程是一个运行起来的程序,而程序是存放在磁盘的,cpu要想执行程序的指令,需要先将程序加载到内存中。
课本概念:进程是被加载到内存运行的程序。
内核观点:担当分配系统资源(CPU时间,内存)的实体。
操作系统中有着大量的进程,操作系统作为管理者,管理的其实是大量进程相关的数据,那么如何管理这些数据呢?
当二进制代码直接加载到内存时,操作系统为了更好地管理加载的程序,创建了描述该进程的数据结构。这样,操作系统只用看这个数据结构,不用管各种复杂多样的二进制代码,并且将它们组织起来进行管理。
进程控制块(PCB)
这个数据结构叫PCB(process control block),进程信息被放在其中,可以理解为进程属性的集合,在linux的PCB是task_struct
。
struct task_struct {volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */struct thread_info *thread_info;atomic_t usage;unsigned long flags; /* per process flags, defined below */unsigned long ptrace;int lock_depth; /* Lock depth */int prio, static_prio;struct list_head run_list;prio_array_t *array;//.....
}
当有一个程序被加载到内存时,操作系统会为该进程在内存中创建一个task_struct
类型的对象,并将该进程放入双链表等其他结构中。这样,操作系统对进程的管理就变为操作系统对PCB的管理,再变为操作系统对双链表等结构的增删查改等操作。
由此可以总结:进程 = 内核数据结构(PCB等)+ 可执行程序(代码+数据)
二.进程查看
通过指令查看进程
为了让进程能够一直运行方便观察,写一个死循环程序,让其每隔1秒钟打印一句话。
#include <stdio.h>
#include <unistd.h>int main()
{while(1){printf("It's a process.\n");sleep(1);}return 0;
}
随后运行它,此时该程序变成了一个进程:
接着就可以用ps
指令查看进程信息,同时配合grep
进行抓取
ps ajx | grep myprocess
得到以下结果:
可以看到系统中关于myprocess
的进程一共有两个,第一行是我们写的运行的程序,第二行是grep
命令进行抓取的进程。展示了各种信息:PPID、PID、PGID等等,这些就是PCB的一部分。
注意:task_struct
是内核数据结构,查看进程信息读取该数据,必须要通过系统调用。
通过proc目录查看
proc
是一个目录,里面存放当前系统实时的 进程信息。
ls /proc
这里的数字就是进程的PID
,由于此时已经将myprocess
进程停止,此目录并没有找到名为167647
的目录。
但是,仔细看,却有165058
,这是刚才myprocess
的父进程ID即PPID
,通过指令可以知道,该进程其实就是bash
:
再次运行myprocess
,并且通过指令得到其PID
,进入该文件夹,可以发现进程的数据显式存在文件中。
进程的cwd
和exe
查看该目录详细信息,有两个文件很瞩目
cwd
: Current Work Directory 指出该进程当前工作路径
exe
: 指出该进程可执行程序的磁盘文件
修改程序,添加一个fopen
函数
#include <stdio.h>
#include <unistd.h>int main()
{FILE* fp = fopen("1.txt", "w"); // 若不存在就创建while (1) {printf("It's a process.\n");sleep(1);}
}
这恰好就是cwd
链接的目录,说明fopen
使用了查看cwd
的系统调用。
再看exe
,此时进程运行中,直接删除其链接在磁盘中的文件,发现进程没有终止,停止进程再运行显然就会失败了。
运行程序,本质就是将其从磁盘拷贝至内存中,进程与其磁盘上对应程序没有直接关系。
获取进程pid和ppid
可以直接通过系统调用getpid()
和getppid()
得到当前进程的pid和ppid(父进程的pid),返回值为pid_t
类型,底层就是整数。
运行以下代码
#include <stdio.h>
#include <unistd.h>int main()
{while (1){printf("It's a process.\t");printf("pid:%d, ppid:%d\n",getpid(), getppid());sleep(1);}return 0;
}
可以看到打印出当前进程的pid
和ppid
。
通过ps axj | head -1; ps axj | grep 184670
进行验证,当前进程是./myprocess
且其父进程是bash
。
通过fork()创建子进程
通过man
指令查看fork()
函数细节
fork()
函数可以创建子进程,创建成功后父子进程代码共享。
若成功创建,子进程的pid
返回给父进程,0返回给子进程;
若失败,-1返回给父进程,没有子进程。
代码共享可以通过以下代码得到验证
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int main()
{printf("before\n");fork();printf("Hello, pid:%d\n", getpid());
}
在fork()
之前的代码只执行了一次,之后的代码执行了两次,这两次分别是两个进程执行的。
创建父子进程是为了做不同的事情,一般是通过if/else
来进行分流达到的,这恰恰用到了fork()
有两个返回值的特点,下面的代码若是初见一定会迷惑。
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int main()
{pid_t id = fork();// id: 0-子进程 >0-父进程if (id == 0){while(1){printf("child process, pid: %d, ppid: %d", getpid(), getppid());sleep(1);}}else{while(1){printf("father process, pid: %d, ppid: %d", getpid(), getppid());sleep(1);}}
}
利用父子进程fork()
返回值不同,达到两个死循环都在不断执行的效果:
通过指令查看,确实两个进程是父子进程关系:
下面来简要分析上面的情况,具体细节会在之后进程地址空间部分详谈。
- 为什么两个死循环会同时执行❓
上节讲过,进程 = 内核数据结构(PCB等)+ 可执行程序(代码+数据)。通过fork()
创建子进程,肯定也要给子进程创建一个独立的task_struct
,而其代码和数据指向了父进程接下来的代码和数据。子进程的大部分属性值也是由父进程拷贝而来,修改前地址不会改变。
在CPU角度,它不会管谁是父进程,谁是子进程,会在操作系统的管理下并发执行。在我们的视角下,两个死循环同时执行了。
- 为什么
fork()
返回值如此设计❓
父与子的关系是一对一或者一对多的。这样的关系导致父找子并不容易,所以创建子进程成功后需要把子进程的pid
返回给父进程,方便父进程控制子进程。
而子找父是很容易的,通过系统调用getppid()
即可。
- 为什么
fork()
会返回两次值❓
fork()
之前只有父进程,即只有父进程才能调用fork()
。fork()
内部在return
之前肯定已经将子进程创建成功,又子进程和父进程在创建成功后代码共享,那么子进程和父进程都会执行return
这条语句,这也就是为什么fork()
会返回两次值。
- 同一个变量
id
怎么会既大于0,又等于0❓
进程之间具有独立性,一个进程崩溃了,不会影响另一个进程。这里的id
是父子进程的共享数据,若父子进程对共享数据有写操作,这时操作系统会将该数据拷贝两份,这就是写时拷贝。那么此时,虽然这是同一个变量名,但实际上表示的是不同的值,那么id
出现两种情况也就不足为奇了,实际在底层的空间根本就不是一个。
相关文章:

进程概念、PCB及进程查看
文章目录 一.进程的概念进程控制块(PCB) 二.进程查看通过指令查看进程通过proc目录查看进程的cwd和exe获取进程pid和ppid通过fork()创建子进程 一.进程的概念 进程是一个运行起来的程序,而程序是存放在磁盘的,cpu要想执行程序的指…...
PyEcharts 数据可视化:从入门到实战
一、PyEcharts 简介 PyEcharts 是基于百度开源可视化库 ECharts 的 Python 数据可视化工具,支持生成交互式的 HTML 格式图表。相较于 Matplotlib 等静态图表库,PyEcharts 具有以下优势: 丰富的图表类型(30)动态交互功…...

RT-Thread+STM32L475VET6——ADC采集电压
文章目录 前言一、板载资源二、具体步骤1.打开CubeMX进行配置1.1 使用外部高速时钟,并修改时钟树1.2 打开ADC1的通道3,并配置为连续采集模式(ADC根据自己需求调整)1.3 打开串口1.4 生成工程 2. 配置ADC2.1 打开ADC驱动2.2 声明ADC2.3 剪切stm…...

easyexcel 2.2.6版本导出excel模板时,标题带下拉框及其下拉值过多不显示问题
需求背景:有一个需求要做下拉框的值有100多条,同时这个excel是一个多sheet的导入模板 直接用easyexcel 导出,会出现下拉框的值过多,导致生成出来的excel模板无法正常展示下拉功能 使用的easyexcel版本:<depende…...

树(数据结构·)
树(数据结构篇) 里面没有结点时,称之为空树 树型结构是一对多的形式 深度优先遍历: 所谓的DFS,也就是说每次都尝试向更深的节点走,也就是一条路走到黑 当一条路走完,走到…...
XUnity.AutoTranslator-deepseek——调用腾讯的DeepSeek V3 API,实现Unity游戏中日文文本的自动翻译
XUnity.AutoTranslator-deepseek 本项目通过调用腾讯的DeepSeek V3 API,实现Unity游戏中日文文本的自动翻译。 准备工作 1. 获取API密钥 访问腾讯云API控制台申请DeepSeek的API密钥(限时免费)。也可以使用其他平台提供的DeepSeek API。 …...

谈谈 ES 6.8 到 7.10 的功能变迁(1)- 性能优化篇
前言 ES 7.10 可能是现在比较常见的 ES 版本。但是对于一些相迭代比较慢的早期业务系统来说,ES 6.8 是一个名副其实的“钉子户”。 借着工作内升级调研的任务东风,我整理从 ES 6.8 到 ES 7.10 ELastic 重点列出的新增功能和优化内容。将分为 6 个篇幅给…...

[250222] Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡 | SQLPage v0.33 发布
目录 Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡SQLPage v0.33 发布:使用 SQL 构建自定义 UI 和 API! Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡 Kimi 开放平台推出全新模型 kimi-latest,旨在…...
深入理解设计模式之解释器模式
深入理解设计模式之解释器模式 在软件开发的复杂世界中,我们常常会遇到需要处理特定领域语言的情况。比如在开发一个计算器程序时,需要解析和计算数学表达式;在实现正则表达式功能时,要解析用户输入的正则表达式来匹配文本。这些场景都涉及到对特定语言的解释和执行,而解…...
深入理解设计模式之代理模式
深入理解设计模式之代理模式 在软件开发的复杂体系中,我们常常会遇到这样的情况:需要控制对某个对象的访问,或者在访问对象前后添加一些额外的处理逻辑,又或者希望在不改变原对象代码的基础上扩展其功能。代理模式(Pr…...

Golang | 每日一练 (3)
💢欢迎来到张胤尘的技术站 💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 Golang | 每日一练 (3)题目参考答案map 实现原理hmapb…...

企业数据集成:实现高效调拨出库自动化
调拨出库对接调出单-v:旺店通企业奇门数据集成到用友BIP 在企业信息化管理中,数据的高效流转和准确对接是实现业务流程自动化的关键。本文将分享一个实际案例,展示如何通过轻易云数据集成平台,将旺店通企业奇门的数据无缝集成到用…...

提效10倍:基于Paimon+Dolphin湖仓一体新架构在阿里妈妈品牌业务探索实践
1. 业务背景 阿里妈妈品牌广告数据包括投放引擎、下发、曝光、点击等日志,面向运筹调控、算法特征、分析报表、诊断监控等应用场景,进行了品牌数仓能力建设。随着业务发展,基于Lambda架构的数仓开发模式,缺陷日益突出:…...
Deepseek快速做PPT
背景: DeepSeek大纲生成 → Kimi结构化排版 → 数据审查,细节调整 DeepSeek 拥有深度思考能力,擅长逻辑构建与内容生成,它会根据我们的问题进行思考,其深度思考能力当前测试下来,不愧为国内No.1,而且还会把中间的思考过程展示出来,大多时候会给出很多我们意想不到的思…...

论文解读 | AAAI'25 Cobra:多模态扩展的大型语言模型,以实现高效推理
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者讲解回放! 个人信息 作者:赵晗,浙江大学-西湖大学联合培养博士生 内容简介 近年来,在各个领域应用多模态大语言模型(MLLMs&…...

uniapp修改picker-view样式
解决问题: 1.选中文案样式,比如字体颜色 2.修改分割线颜色 3.多列时,修改两边间距让其平分 展示效果: 代码如下 <template><u-popup :show"showPicker" :safeAreaInsetBottom"false" close&quo…...

HDFS Java 客户端 API
一、基本调用 Configuration 配置对象类,用于加载或设置参数属性 FileSystem 文件系统对象基类。针对不同文件系统有不同具体实现。该类封装了文件系统的相关操作方法。 1. maven依赖pom.xml文件 <dependency><groupId>org.apache.hadoop</groupId&g…...

【华三】STP的角色选举(一文讲透)
【华三】STP的角色选举 一、引言二、STP基础概念扫盲三、根桥选举过程详解四、根端口选举过程详解五、指定端口选举过程详解六、阻塞端口七、总结与配置建议七、附录**1. BPDU字段结构图(文字描述)****2. 华三STP常用命令速查表** 文章总结 一、引言 在…...
【C#零基础从入门到精通】(二十六)——C#三大特征-多态详解
【C#零基础从入门到精通】(二十六)——C#三大特征-多态详解 在 C# 中,多态是面向对象编程的重要特性之一,它允许不同的对象对同一消息做出不同的响应。多态可以分为静态多态和动态多态,下面将详细介绍它们以及各自包含的知识点。 多态概述 多态性使得代码更加灵活、可扩展…...

宇树科技13家核心零部件供应商梳理!
2025年2月6日,摩根士丹利(Morgan Stanley)发布最新人形机器人研报:Humanoid 100: Mapping the Humanoid Robot Value Chain(人形机器人100:全球人形机器人产业链梳理)。 Humanoid 100清单清单中…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...