当前位置: 首页 > news >正文

Linux网络 网络层

IP 协议

协议头格式

  • 4 位版本号(version): 指定 IP 协议的版本, 对于 IPv4 来说, 就是 4.
  • 4 位头部长度(header length): IP 头部的长度是多少个 32bit, 也就是 4 字节,4bit 表示最大的数字是 15, 因此 IP 头部最大长度是 60 字节.
  • 8 位服务类型(Type Of Service): 3 位优先权字段(已经弃用), 4 TOS 字段, 和 1 位保留字段(必须置为 0). 4 TOS 分别表示: 最小延时, 最大吞吐量, 最高可靠性, 最小成本. 这四者相互冲突, 只能选择一个. 对于 ssh/telnet 这样的应用程序, 最小延时比较重要; 对于 ftp 这样的程序, 最大吞吐量比较重要.
  • 16 位总长度(total length): IP 数据报整体占多少个字节.
  • 16 位标识(id): 唯一的标识主机发送的报文. 如果 IP 报文在数据链路层被分片了, 那么每一个片里面的这个 id 都是相同的.
  • 3 位标志字段: 第一位保留,现在不用,第二位置为 1 表示禁止分片, 这时候如果报文长度超过MTU(默认为 1500) IP 模块就会丢弃报文. 第三位表示"更多分片", 如果分片了的话, 最后一个分片置为 0, 其他是 1. 类似于一个结束标记.
  • 13 位分片偏移(framegament offset): 是分片相对于原始 IP 报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置. 实际偏移的字节数是这个值 8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是 8 的整数倍(否则报文就不连续了).
  • 8 位生存时间(Time To Live, TTL): 数据报到达目的地的最大报文跳数. 一般是 64. 每次经过一个路由, TTL -= 1, 一直减到 0 还没到达, 那么就丢弃了. 这个字段主要是用来防止出现路由循环
  • 8 位协议: 表示上层协议的类型,如 UDP 或者 TCP
  • 16 位头部校验和: 使用 CRC 进行校验, 来鉴别头部是否损坏.
  • 32 位源地址和 32 位目标地址: 表示发送端和接收端.

网段划分

IP 地址分为两个部分 , 网络号和主机号。
  • 网络号: 保证相互连接的两个网段具有不同的标识
  • 主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号,网络号相同的主机放到一起称为同一个子网。如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复。

通过合理设置主机号和网络号 , 就可以保证在相互连接的网络中 , 每台主机的 IP 地址都不相同。如果 手动管理子网内的 IP, 是一个相当麻烦的事情,所以衍生出 DHCP 技术,其能自动给子网内新增主机节点分配 IP 地址,一般的路由器都带有这种 DHCP 功能。
过去曾经提出一种划分网络号和主机号的方案 , 把所有 IP 地址分为五类 , 如下图所示
随着 Internet 的飞速发展, 这种划分方案的局限性很快显现出来, 大多数组织都申请 B 类网络地址, 导致 B 类地址很快就分配完了 , A 类却浪费了大量地址。 例如, 申请了一个 B 类地址 , 理论上一个子网内能允许 6 5 千多个主机 . A 类地址的子网内的主机数更多,然而实际网络架设中, 不会存在一个子网内有这么多的情况 . 因此大量的 IP 址都被浪费掉了。
针对这种情况提出了新的划分方案 , 称为 CIDR(Classless Interdomain Routing):
引入一个额外的子网掩码(subnet mask) 来区分网络号和主机号,子网掩码也是一个 32 位的正整数, 通常用一串 "0" 来结尾。将 IP 地址和子网掩码进行 " 按位与 " 操作 , 得到的结果就是网络号。
IP 地址和子网掩码还有一种更简洁的表示方法, 例如 140.252.20.68/24, 表示 IP 地址为 140.252.20.68,子网掩码的高 24 位是 1, 也就是 255.255.255.0

特殊的 IP 地址

  • 将 IP 地址中的主机地址全部设为 0, 就成为了网络号, 代表这个局域网
  • 将 IP 地址中的主机地址全部设为 1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包
  • 127.*IP 地址用于本机环回(loop back)测试,通常是 127.0.0.1

私有 IP 地址和公网 IP 地址

我们知道 , IP 地址 (IPv4) 是一个 4 字节 32 位的正整数 . 那么一共只有 2 32 次方个 IP 地址, 大概是 43 亿左右,实际上 , 由于一些特殊的 IP 地址的存在 , 数量远不足 43 亿. 而 TCP/IP 协议规定 , 每个主机都需要有一个 IP 地址,这就存在 IP 地址不够用的问题。利用 CIDR、私有 IP 地址和公网 IP 地址能在一定程度上缓解了 IP 地址不够用的问题, 提高了利用率 , 减少了浪费。

如果一个组织内部组建局域网 ,IP 地址只用于局域网内的通信 , 而不直接连到 Internet , 理论上使用任意的 IP 地址都可以 , 但是 RFC 1918 规定了用于组建局域网的私有 IP 地址
  • 10.*,前 8 位是网络号,16,777,216 个地址
  • 172.16.*到 172.31.*,12 位是网络号,1,048,576 个地址
  • 192.168.*,前 16 位是网络号,65,536 个地址
包含在这个范围中的 , 都成为私有 IP, 其余的则称为全局 IP( 或公网 IP)。
  • 一个路由器可以配置两个 IP 地址, 一个是 WAN IP, 一个是 LAN IP(子网IP),路由器 LAN 口连接的主机, 都从属于当前这个路由器的子网中。不同的路由器, 子网 IP 其实都是一样的(通常都是 192.168.1.1). 子网内的主机 IP 地址不能重复, 但是子网之间的 IP 地址就可以重复了.
  • 每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点. 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN IP 就是一个公网 IP .
  • 子网内的主机需要和外网进行通信时, 路由器将 IP 首部中的 IP 地址进行替换(替换成 WAN IP), 这样逐级替换, 最终数据包中的 IP 地址成为一个公网 IP. 这种技术称为 NAT(Network Address Translation,网络地址转换).

路由

路由是指网络层根据目标地址选择路径的过程,它涉及网络中节点(如路由器)之间的通信,以确定最佳路径。

IP 数据包 , 到达路由器时 , 路由器会先查看目的 IP,路由器决定这个数据包是能直接发送给目标主机, 还是需要发送给下一个路由器。依次反复, 一直到达目标 IP 地址。
每走一步后,如何判定当前这个数据包该发送到哪里呢 ? 这个就依靠每个节点内部维护一个路由表

路由表(Routing Table)

路由表是路由和转发的核心数据结构,它存储了网络路径的信息。在Linux系统中,可以通过以下命令查看路由表:

route

  • Destination(目的网络地址):数据包需要到达的目标网络。

  • Gateway(下一跳地址):数据包的下一个转发目标。

  • Genmask(子网掩码):用于区分网络部分和主机部分。

  • Flags:U标志表示此条目有效,G标志表示此条目的下一跳地址是某个路由器的地址,没有G标志表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发。

  • 度量值(Metric):用于衡量路径的“成本”或“优先级”。

  • Iface(出接口):数据包从哪个网络接口发送。

如果目的 IP 命中了路由表 , 就直接转发即可。例如要发送的数据包的目的地址是 172.17.56.3,跟第三行的子网掩码做与运算得 到 172.17.0.0,与第三行的目的网络地址相符, 因此从 docker0   接口发送出去。
路由表中的 default 一行, 主要由下一跳地址和发送接口两部分组成 , 当目的地址与路由表中其它行都不匹配时, 就按缺省路由条目规定的接口发送到下一跳地址。

相关文章:

Linux网络 网络层

IP 协议 协议头格式 4 位版本号(version): 指定 IP 协议的版本, 对于 IPv4 来说, 就是 4. 4 位头部长度(header length): IP 头部的长度是多少个 32bit, 也就是 4 字节,4bit 表示最大的数字是 15, 因此 IP 头部最大长度是 60 字节. 8 位服务类型(Type Of Service):…...

系统讨论Qt的并发编程——逻辑上下文的分类

目录 前言 首先,讨论Qt里常见的三种上下文 同一线程的串行执行 同一线程的异步执行 多线程的执行 moveToThread办法 前言 笔者最近看了一个具备一定启发性质的Qt教程,在这里,笔者打算整理一下自己的笔记。分享在这里. 首先&#xff0c…...

《Linux Shell 脚本深度探索:原理与高效编程》

1. 基本结构 Shebang 行 #!/bin/bash # Shebang 行指定了脚本使用的解释器。 /bin/bash 表示使用 Bash 解释器执行脚本。 注释 # 这是注释,不会被执行 2. 变量 定义变量 variable_namevalue # 不需要加 $ 来定义变量。 # 变量名不能包含空格或特殊字符。 访…...

深入剖析:基于红黑树实现自定义 map 和 set 容器

🌟 快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。🌟 在 C 标准模板库(STL)的大家庭里,map和set可是超级重要的关联容器成员呢😎&#x…...

在大数据项目中如何设计和优化数据模型

在大数据项目中,设计和优化数据模型是一个涉及多个步骤和维度的复杂过程。以下是我通常采取的方法: 一、数据模型设计 明确业务需求: 深入了解项目的业务场景和目标,明确数据模型需要解决的具体问题。与业务团队紧密合作&#xf…...

JavaScript querySelector()、querySelectorAll() CSS选择器解析(DOM元素选择)

文章目录 基于querySelector系列方法的CSS选择器深度解析一、方法概述二、基础选择器类型1. 类型选择器2. ID选择器3. 类选择器4. 属性选择器 三、组合选择器1. 后代组合器2. 子元素组合器3. 相邻兄弟组合器4. 通用兄弟组合器 四、伪类与伪元素1. 结构伪类2. 状态伪类3. 内容伪…...

Linux系统中处理子进程的终止问题

1. 理解子进程终止的机制 在Unix/Linux系统中,当子进程终止时,会向父进程发送一个SIGCHLD信号。父进程需要捕捉这个信号,并通过调用wait()或waitpid()等函数来回收子进程的资源。这一过程被称为“回收僵尸进程”。 如果父进程没有及时调用w…...

Docker 不再难懂:快速掌握容器命令与架构原理

1. Docker 是容器技术的一种 容器(Container)概述 容器(Container)是一种轻量级的虚拟化技术,它将应用程序及其所有依赖环境打包在一个独立的、可移植的运行时环境中。容器通过操作系统级的虚拟化提供隔离&#xff0…...

取消票证会把指定的票证从数据库中删除,同时也会把票证和航班 等相关表中的关联关系一起删除。但在删除之前,它会先检查当前用户是否拥有这张票

在做航班智能客服问答系统时会遇到取消票证的场景,这里涉及数据库的操作时会把指定的票证从数据库中删除,同时也会把票证和航班等相关表中的关联关系一起删除。但在删除之前,需要先检查当前用户是否拥有这张票,只有票主才有权限取…...

力扣-贪心-763 划分字母区间

思路 先统计字符串中每一个字母出现的最后下标&#xff0c;然后从end初始化为第一个字母出现的最后下标&#xff0c;在i<end时&#xff0c;不断更新end&#xff0c;因为一旦囊括新的字母就最起码要遍历到新字母出现的最后下标&#xff0c;在i>end时&#xff0c;说明遍历…...

【Redis 原理】网络模型

文章目录 用户空间 && 内核空间阻塞IO非阻塞IO信号驱动IO异步IOIO多路复用selectpollepoll Web服务流程Redis 网络模型Redis单线程网络模型的整个流程Redis多线程网络模型的整个流程 用户空间 && 内核空间 为了避免用户应用导致冲突甚至内核崩溃&#xff0c;用…...

cpp中的继承

一、继承概念 在cpp中&#xff0c;封装、继承、多态是面向对象的三大特性。这里的继承就是允许已经存在的类&#xff08;也就是基类&#xff09;的基础上创建新类&#xff08;派生类或者子类&#xff09;&#xff0c;从而实现代码的复用。 如上图所示&#xff0c;Person是基类&…...

DeepSeek全栈接入指南:从零到生产环境的深度实践

第一章:DeepSeek技术体系全景解析 1.1 认知DeepSeek技术生态 DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在: 1.1.1 多模态智能引擎 自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算…...

CSS 真的会阻塞文档解析吗?

在网页开发领域&#xff0c;一个常见的疑问是 CSS 是否会阻塞文档解析。理解这一问题对于优化网页性能、提升用户体验至关重要。要深入解答这个问题&#xff0c;需要从浏览器渲染网页的原理说起。 浏览器渲染网页的基本流程 浏览器在接收到 HTML 文档后&#xff0c;会依次进行…...

大模型的UI自动化:Cline 使用Playwright MCP Server完成测试

大模型的UI自动化:Cline 使用Playwright MCP Server完成测试 MCP MCP(Model Context Protocol),是一个开发的协议,标准化了应用程序如何为大模型提供上下文。MCP提供了一个标准的为LLM提供数据、工具的方式,使用MCP会更容易的构建Agent或者是基于LLM的复杂工作流。 最近…...

碰撞检测 | 图解凸多边形分离轴定理(附ROS C++可视化)

目录 0 专栏介绍1 凸多边形碰撞检测2 多边形判凸算法3 分离轴定理(SAT)4 算法仿真与可视化4.1 核心算法4.2 仿真实验 0 专栏介绍 &#x1f525;课设、毕设、创新竞赛必备&#xff01;&#x1f525;本专栏涉及更高阶的运动规划算法轨迹优化实战&#xff0c;包括&#xff1a;曲线…...

Python 基本数据类型

目录 1. 字符串&#xff08;String&#xff09; 2. 列表&#xff08;List&#xff09; 3. 字典&#xff08;Dictionary&#xff09; 4. 集合&#xff08;Set&#xff09; 5. 数字&#xff08;Number&#xff09; 6. 布尔值&#xff08;Boolean&#xff09; 1. 字符串&…...

突破“第一崇拜“:五维心理重构之路

一、视频介绍 在这个崇尚"第一"的时代&#xff0c;我们如何找到自己的独特价值&#xff1f;本视频将带您踏上五维心理重构之旅&#xff0c;从诗意人生的角度探讨如何突破"圣人之下皆蝼蚁"的局限。我们将穿越人生的不同阶段&#xff0c;从青春的意气风发到…...

KubeKey一键安装部署k8s集群和KubeSphere详细教程

目录 一、KubeKey简介 二、k8s集群KubeSphere安装 集群规划 硬件要求 Kubernetes支持版本 操作系统要求 SSH免密登录 配置集群时钟 所有节点安装依赖 安装docker DNS要求 存储要求 下载 KubeKey 验证KubeKey 配置集群文件 安装集群 验证命令 登录页面 一、Ku…...

UE5网络通信架构解析

文章目录 前言一、客户端-服务器架构&#xff08;C/S Model&#xff09;二、对等网络架构&#xff08;P2P&#xff0c;非原生支持&#xff09;三、混合架构&#xff08;自定义扩展&#xff09;四、UE5网络核心机制 前言 UE5的网络通信主要基于客户端-服务器&#xff08;C/S&am…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...