当前位置: 首页 > news >正文

图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)

一、整体步骤

        本脚本中,关键步骤包括以下步骤:

        1、图片加载:

                脚本会遍历指定的图片目录,将所有图片加载到内存中。

        2、图像预处理:

                比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除          颜色、尺寸等因素的影响。

        3、相似度计算:

                图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数              (SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。OpenCV提供了部            分功能来实现这些算法,例如`cv2.compareHist`可以用于直方图比较。

        4、阈值设置:

                根据实际需求,设定一个相似度阈值,低于这个阈值的图片被认为是重复的。该阈值可          能需要通过实验调整以达到最佳效果。

        5、比较与去重

                脚本会比较每一对图片的相似度,如果超过阈值,则认为这两张图片是重复的,移动到          指定目录。这里可能使用一种数据结构(如字典或集合)来记录已检查过的图片,避免不必            要的比较。

二、原理解析

2.1 均值哈希

     1.缩放:图片缩放为8*8,保留结构,除去细节。
     2.灰度化:转换为灰度图。
     3.求平均值:计算灰度图所有像素的平均值。
     4.比较:像素值大于平均值记作1,相反记作0,总共64位。
     5.生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。
     6.对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样              的,不相同位数越少,图片越相似。

2.2 插值哈希

  1. 缩小图像:将输入图像调整为10x10像素(可自己设置),以便进行后续的差值计算。

  2. 灰度化:将彩色图像转换为灰度图像。

  3. 计算差异值:比较相邻像素的灰度值,如果左边的像素比右边的更亮,则记录为1,否则为0。每行10个像素通过左右像素的两两比较,会产生10个不同的差异值,一共10行,则会产生100个差异值。

  4. 生成哈希值:将64位的二进制值按每4个字符为1组,转换成16进制,生成一个长度为16的字符串。

  5. 哈希值比较:通过比较两个图像的哈希值的汉明距离(Hamming Distance),评估图像的相似度,距离越小表示图像越相似。

2.3 感知哈希

        均值哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希 算法,它采用的是DCT(离散余弦变换)来降低频率的方法。

     1. 缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
     2. 转化为灰度图:把缩放后的图片转化为灰度图。
     3. 计算DCT:  DCT把图片分离成分率的集合
     4.缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表图片的最低频率。
     5.计算平均值:计算缩小DCT后的所有像素点的平均值。
     6.进一步减小DCT:大于平均值记录为1,反之记录为0.
     7.得到信息指纹:组合64个信息位,顺序随意保持一致性。
     8.最后比对两张图片的指纹,获得汉明距离即可。

2.4 直方图对比

        直方图距离通过比较图像的灰度直方图来衡量相似性,直方图相似度值越大,图像越相似。

最后,附上整体代码,只需替换图片路径、选择使用哪种方法、调整阈值即可使用:


import cv2
import numpy as np
import os
import shutil
from PIL import Image# 均值哈希算法
def aHash(img,shape=(10,10)):# 缩放为10*10img = cv2.resize(img, shape)# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# s为像素和初值为0,hash_str为hash值初值为''s = 0hash_str = ''# 遍历累加求像素和for i in range(shape[0]):for j in range(shape[1]):s = s + gray[i, j]# 求平均灰度avg = s / 100# 灰度大于平均值为1相反为0生成图片的hash值for i in range(shape[0]):for j in range(shape[1]):if gray[i, j] > avg:hash_str = hash_str + '1'else:hash_str = hash_str + '0'return hash_str# 差值哈希算法
def dHash(img,shape=(10,10)):# 缩放10*11img = cv2.resize(img, (shape[0]+1, shape[1]))# 转换灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)hash_str = ''# 每行前一个像素大于后一个像素为1,相反为0,生成哈希for i in range(shape[0]):for j in range(shape[1]):if gray[i, j] > gray[i, j + 1]:hash_str = hash_str + '1'else:hash_str = hash_str + '0'return hash_str# 感知哈希算法(pHash)
def pHash(img,shape=(10,10)):# 缩放32*32img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 将灰度图转为浮点型,再进行dct变换dct = cv2.dct(np.float32(gray))# opencv实现的掩码操作dct_roi = dct[0:10, 0:10]hash = []avreage = np.mean(dct_roi)for i in range(dct_roi.shape[0]):for j in range(dct_roi.shape[1]):if dct_roi[i, j] > avreage:hash.append(1)else:hash.append(0)return hash# 通过得到RGB每个通道的直方图来计算相似度
def classify_hist_with_split(image1, image2, size=(256, 256)):# 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值image1 = cv2.resize(image1, size)image2 = cv2.resize(image2, size)sub_image1 = cv2.split(image1)sub_image2 = cv2.split(image2)sub_data = 0for im1, im2 in zip(sub_image1, sub_image2):sub_data += calculate(im1, im2)sub_data = sub_data / 3return sub_data# 计算单通道的直方图的相似值
def calculate(image1, image2):hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])# 计算直方图的重合度degree = 0for i in range(len(hist1)):if hist1[i] != hist2[i]:degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))else:degree = degree + 1degree = degree / len(hist1)return degree# Hash值对比
def cmpHash(hash1, hash2,shape=(10,10)):n = 0# hash长度不同则返回-1代表传参出错if len(hash1)!=len(hash2):return -1# 遍历判断for i in range(len(hash1)):# 相等则n计数+1,n最终为相似度if hash1[i] == hash2[i]:n = n + 1return n/(shape[0]*shape[1])if __name__ == '__main__':load_path = r'images_full'  # 要去重的文件夹save_path = r'img_dir_repeat'  # 空文件夹,用于存储检测到的重复的照片os.makedirs(save_path, exist_ok=True)# 获取图片列表 file_map,字典{文件路径filename : 文件大小image_size}file_map = {}image_size = 0# 遍历filePath下的文件、文件夹(包括子目录)for parent, dirnames, filenames in os.walk(load_path):# for dirname in dirnames:# print('parent is %s, dirname is %s' % (parent, dirname))for filename in filenames:image_size = os.path.getsize(os.path.join(parent, filename))file_map.setdefault(os.path.join(parent, filename), image_size)# 获取的图片列表按 文件大小image_size 排序file_map = sorted(file_map.items(), key=lambda d: d[1], reverse=False)file_list = []for filename, image_size in file_map:file_list.append(filename)# 取出重复的图片file_repeat = []for currIndex, _ in enumerate(file_list):dir_image1 = cv2.imread(file_list[currIndex])dir_image2 = cv2.imread(file_list[currIndex + 1])hash1 = aHash(dir_image1)    # 此处可替换不同的方法 hash2 = aHash(dir_image2)    # 此处可替换不同的方法 result = cmpHash(hash1, hash2)if (result >= 0.7):    # 阈值设置0.7,可以自己调节file_repeat.append(file_list[currIndex + 1])print("\n相同的图片:", file_list[currIndex], file_list[currIndex + 1])else:print('\n不同的图片:', file_list[currIndex], file_list[currIndex + 1])currIndex += 1if currIndex >= len(file_list) - 1:break# 将重复的图片移动到新的文件夹,实现对原文件夹降重for image in file_repeat:shutil.move(image, save_path)print("正在移除重复照片:", image)

相关文章:

图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)

一、整体步骤 本脚本中,关键步骤包括以下步骤: 1、图片加载: 脚本会遍历指定的图片目录,将所有图片加载到内存中。 2、图像预处理: 比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方…...

Linux:(3)

一:Linux和Linux互传(压缩包) scp:Linux scp 命令用于 Linux 之间复制文件和目录。 scp 是 secure copy 的缩写, scp 是 linux 系统下基于 ssh 登陆进行安全的远程文件拷贝命令。 scp 是加密的,rcp 是不加密的,scp 是…...

vscode设置自动换行

vscode设置自动换行 方法 方法 点击文件->首选项->设置。搜索word wrap -> 选择 on 。 搜索Word Wrap,并把选项改为on。...

Instagram 隐私设置全面解析:如何保护你的个人数据?

Instagram 隐私设置全面解析:如何保护你的个人数据? 在这个数字化时代,社交媒体平台如 Instagram 已成为我们日常生活的一部分。然而,随着个人信息泄露和隐私侵犯事件的频发,保护个人数据变得尤为重要。本文将全面解析…...

Activiti 5 + Spring Boot全流程开发指南

目录 一、环境搭建(Spring Boot 2.x) 1.1 依赖配置 1.2 配置文件 二、流程定义与部署 2.1 创建BPMN文件(leave.bpmn) 2.2 流程部署服务 三、流程操作核心实现 3.1 启动流程实例 3.2 查询待办任务 四、审批流程处理 4.1 …...

spring结合mybatis多租户实现单库分表

实现单库分表 思路:student表数据量大,所以将其进行分表处理。一共有三个分表,分别是student0,student1,student2,在新增数据的时候,根据请求头中的meta-tenant参数决定数据存在哪张表表。 数…...

面向对象编程(OOP)基础:Java入门指南

引言 随着计算机技术的发展,软件的应用越来越复杂,单个程序的功能也逐渐增多。为了提高代码的复用性和可维护性,Java语言引入了**面向对象编程(Object-Oriented Programming, OOP)**这一设计理念。 OOP是一种设计程序…...

day7作业

编写一个如下场景: 有一个英雄Hero类,私有成员,攻击(Atx),防御(Defense),速度(Speed),生命值(Blood),以及所有的set get 方…...

图像处理之图像边缘检测算法

目录 1 图像边缘检测算法简介 2 Sobel边缘检测 3 经典的Canny边缘检测算法 4 演示Demo 4.1 开发环境 4.2 功能介绍 4.3 下载地址 参考 1 图像边缘检测算法简介 图像边缘检测是计算机视觉和图像处理中的基本问题,主要目的是提取图像中明暗变化明显的边缘细节…...

第二十五 :搭建 pinia 环境

第一步:npm install pinia 第二步:操作src/main.ts import { createApp } from vue import App from ./App.vue ​ /* 引入createPinia,用于创建pinia */ import { createPinia } from pinia ​ /* 创建pinia */ const pinia createPinia(…...

学习Java数组操作:从基础到高级技巧详解

在Java编程中,数组是一种非常基础且常用的非 primitives 数据结构,它用于存储一组相同类型的值。无论是数据处理、遍历还是其他操作,数组都是一个不可或缺的工具。本文将从数组的基本概念开始,逐步介绍常用的操作方法,…...

算法题(79):两个数组的交集

审题: 本题需要我们查找两个给定数组的无重复数据交集,并以数组的形式返回 思路: 方法一:set 之前我们学习过unordered_set的使用,但是unordered_set是无序的,而这里我们的比对算法需要有序数据&#xff0c…...

TFChat:腾讯大模型知识引擎+飞书机器人实现AI智能助手

效果 TFChat项目地址 https://github.com/fish2018/TFChat 腾讯大模型知识引擎用的是DeepSeek R1,项目为sanic和redis实现,利用httpx异步处理流式响应,同时使用buffer来避免频繁调用飞书接口更新卡片的网络耗时。为了进一步减少网络IO消耗&…...

Linux红帽:RHCSA认证知识讲解(四)修改远程配置文件,取消root禁用,便于使用root身份远程

Linux红帽:RHCSA认证知识讲解(四)修改远程配置文件,取消root禁用,便于使用root身份远程 前言一、远程连接的用途和原因二、通过 ssh 远程登陆系统三、默认限制及解决方案(一)非常规方法一&#…...

验证码介绍及生成与验证(HTML + JavaScript实现)

验证码介绍及生成与验证(HTML JavaScript实现) 验证码 验证码(全自动区分计算机和人类的图灵测试,‌CAPTCHA ,C‌ompletely ‌A‌utomated ‌P‌ublic ‌T‌uring test to tell ‌C‌omputers and ‌H‌umans ‌A‌…...

文心一言AI创意画

介绍 文心一言是百度推出的新一代知识增强大语言模型,属于文心大模型家族的新成员。‌它能够与人对话互动、回答问题、协助创作,高效便捷地帮助人们获取信息、知识和灵感。‌ 特点 文心一言基于数万亿数据和数千亿知识进行融合学习,采用预训…...

WebRTC解析

一、WebRTC 协议概述 WebRTC(Web Real-Time Communication)是由 Google 发起并成为 W3C 标准的实时音视频通信技术,核心特点: 零插件:浏览器原生支持端到端加密(SRTP DTLS)P2P 优先架构&…...

升级Office软件后,Windows 系统右键里没有新建Word、Excel、PowerPoint文件的解决办法

我办公用的电脑,Office 2013 已经用了好多年,最近突发奇想给升级到了 Ofiice 2024。升级过程还蛮顺利的,但是安装完成后,发现点右键里没有新建Word、Excel、PowerPoint,开始菜单里 Word、Excel、PowerPoint 使用都正常…...

车载DoIP诊断框架 --- 连接 DoIP ECU/车辆的故障排除

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身…...

洛谷每日1题-------Day4__陶陶摘苹果

# P1046 [NOIP 2005 普及组] 陶陶摘苹果 ## 题目描述 陶陶家的院子里有一棵苹果树,每到秋天树上就会结出 $10$ 个苹果。苹果成熟的时候,陶陶就会跑去摘苹果。陶陶有个 $30$ 厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

AspectJ 在 Android 中的完整使用指南

一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...

算术操作符与类型转换:从基础到精通

目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...