当前位置: 首页 > news >正文

【Python LeetCode】面试经典 150 题

  • 数组 / 字符串
    • 快慢指针(双指针)总结
      • 88. 合并两个有序数组
      • 27. 移除元素
      • 26. 删除有序数组中的重复项
      • 80. 删除有序数组中的重复项 II
    • `Boyer-Moore` 投票算法
      • 169. 多数元素
      • 扩展:寻找 n/3 多数元素
    • 翻转法
      • 189. 轮转数组
    • 贪心
      • 121. 买卖股票的最佳时机
      • 122. 买卖股票的最佳时机 II
      • 55. 跳跃游戏
      • 45. 跳跃游戏 II
      • 274. H 指数
    • 前缀 / 后缀
      • 238. 除自身以外数组的乘积
      • 134. 加油站
  • 双指针
    • 125. 验证回文串
  • 滑动窗口
  • 矩阵
  • 哈希表
      • 380. O(1) 时间插入、删除和获取随机元素
  • 二叉树
    • 104. 二叉树的最大深度
    • 100. 相同的树
    • 226. 翻转二叉树
  • 分治
  • 回溯

数组 / 字符串

快慢指针(双指针)总结

“快慢指针” 主要用于 数组的原地修改问题,避免额外空间开销,同时保证 O(n) 线性时间复杂度

题目题目要求快指针 i慢指针 p
合并两个有序数组nums1nums2 归并排序遍历 nums1 & nums2,从后向前合并指向 nums1 末尾,填充较大值
移除元素nums 中移除 val,保持相对顺序遍历 nums,查找非 val 元素记录下一个非 val 元素存放位置
删除有序数组中的重复项只保留 1个,相对顺序不变遍历 nums,查找不同的元素记录下一个唯一元素存放位置
删除有序数组中的重复项 II只保留 最多 2 个遍历 nums,查找满足出现≤2次的元素记录下一个可存放元素的位置

快慢指针的核心思路

  1. 遍历数组(快指针 i 负责遍历数组
  2. 找到符合条件的元素(如不同于前一个元素、出现次数不超过 2 次等)
  3. 将其存放到正确的位置(p 负责记录符合条件的元素存放位置
  4. 最终 p 代表新的数组长度

88. 合并两个有序数组

在这里插入图片描述
下面两行代码就可以解决,

nums1[m:] = nums2 # 把 nums2 拼接到 nums1 从下标 m 开始后面
nums1.sort() # 默认升序排序

不过还是规规矩矩用双指针法写一下吧,

在这里插入图片描述

class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""# 指针分别指向 nums1 和 nums2 的最后一个有效元素p1, p2 = m - 1, n - 1# 指针 p 指向合并后数组的最后一个位置p = m + n - 1# 从后往前合并while p1 >= 0 and p2 >= 0:if nums1[p1] > nums2[p2]:nums1[p] = nums1[p1]p1 -= 1else:nums1[p] = nums2[p2]p2 -= 1p -= 1# 如果 nums2 还有剩余元素,填充到 nums1while p2 >= 0:nums1[p] = nums2[p2]p2 -= 1p -= 1

27. 移除元素

在这里插入图片描述

class Solution:def removeElement(self, nums: List[int], val: int) -> int:# 维护一个慢指针 k 指向下一个存放非 val 元素的位置k = 0  # 遍历数组for num in nums:if num != val:  # 只有当元素不等于 val 时,才放入 nums[k] 位置nums[k] = numk += 1  # k 向前移动return k  # 返回新的数组长度

26. 删除有序数组中的重复项

在这里插入图片描述

class Solution:def removeDuplicates(self, nums: List[int]) -> int:# 慢指针 k 记录下一个存放唯一元素的位置k = 1 # 遍历数组for i in range(1, len(nums)):if nums[i] != nums[i - 1]:  # 只有当当前元素不等于前一个元素时才存入nums[k] = nums[i]k += 1  # 移动慢指针return k  # 返回唯一元素的个数

80. 删除有序数组中的重复项 II

在这里插入图片描述

class Solution:def removeDuplicates(self, nums: List[int]) -> int:"""Do not return anything, modify nums in-place instead."""if len(nums) <= 2:return len(nums)  # 数组长度小于等于2时,直接返回# 指针 p 记录下一个存放元素的位置p = 2for i in range(2, len(nums)):if nums[i] != nums[p - 2]:  # 只有当 nums[i] ≠ nums[p-2] 时,才可以保留nums[p] = nums[i]p += 1  # 递增存放位置return p  # p 就是去重后的数组长度

Boyer-Moore 投票算法

Boyer-Moore 投票算法(Boyer-Moore Voting Algorithm) 是一种用于在 数组中寻找出现次数超过 ⌊n/2⌋ 的元素(即 多数元素)的高效算法。

该算法的 时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1),只需要一次遍历和常数级额外空间,非常高效。

  • 若一个元素出现超过 n/2 次,它的 票数净增量一定是正的
  • 其他元素的 抵消票数永远无法超过多数元素的总数
  • 这样,多数元素的 最终 count 绝对不会归零,即使在过程中 count 可能降为零,换新的 candidate 后,最终的 candidate 仍然是多数元素。

169. 多数元素

在这里插入图片描述
可以使用 Boyer-Moore 投票算法高效找出多数元素。该算法的时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)

  • 核心思想:抵消计数,如果某个元素是多数元素(出现次数 > ⌊n/2⌋),那么它最终一定会成为 唯一剩下的候选人
  • 计数规则:遇到相同的元素,count +1;遇到不同的元素,count -1。当 count == 0 时,换一个候选人。

由于 多数元素的出现次数超过 ⌊n/2⌋,即使被其他元素抵消,也最终会留在 candidate 里。

class Solution:def majorityElement(self, nums: List[int]) -> int:"""Boyer-Moore 投票算法"""candidate = None # 维护一个 候选元素count = 0 # 计数器for num in nums:if count == 0:candidate = num  # 选择新的候选多数元素count += (1 if num == candidate else -1) # 增加票数 或 抵消票数return candidate  # 因为题目说多数元素一定存在,最终 candidate 即为结果

扩展:寻找 n/3 多数元素

如果需要找 出现次数超过 n/3 的元素,则可以维护 两个候选人两个计数器

class Solution:def majorityElement(self, nums: List[int]) -> List[int]:candidate1, candidate2, count1, count2 = None, None, 0, 0for num in nums:if count1 == 0:candidate1, count1 = num, 1elif count2 == 0:candidate2, count2 = num, 1elif num == candidate1: # 投票给候选人 1count1 += 1elif num == candidate2: # 投票给候选人 2count2 += 1else: # 没有投票给两个候选人中的任何一人count1 -= 1count2 -= 1# 第二遍遍历,检查候选人是否真的超过 n/3return [c for c in (candidate1, candidate2) if nums.count(c) > len(nums) // 3]

翻转法

翻转法中,交换变量使用 a, b = b, a,本质上是 元组打包(tuple packing)+ 元组解包(tuple unpacking),它的底层实现依赖于:栈操作+引用变更,不会创建新的对象,只是 交换变量指向的内存地址

ROT_TWO 是 Python 字节码中的一个栈操作指令,用于 交换栈顶的两个元素

case ROT_TWO: {PyObject *top = STACK_POP();    // 取出栈顶元素(指针引用)PyObject *second = STACK_POP(); // 取出次栈顶元素(指针引用)STACK_PUSH(top);    // 先压入原来的栈顶STACK_PUSH(second); // 再压入原来的次栈顶DISPATCH();
}
  • PyObject *topPyObject *second 只是指向原来 Python 对象的指针,并没有创建新的对象。
  • STACK_POP() 只是修改了栈指针,而不是拷贝对象。
  • STACK_PUSH() 只是把相同的指针重新放回去,没有额外的内存分配。
    因此,交换是 “原地” 进行的,不涉及对象复制或新分配

189. 轮转数组

在这里插入图片描述
翻转法 利用 三次反转 完成 原地修改,时间 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1),高效且简洁。

class Solution:def rotate(self, nums: List[int], k: int) -> None:"""Do not return anything, modify nums in-place instead."""n = len(nums)k = k % n  # 防止 k 大于 n,取模优化# 定义反转函数def reverse(start: int, end: int):while start < end:nums[start], nums[end] = nums[end], nums[start]start += 1end -= 1reverse(0, n - 1) # 反转整个数组reverse(0, k - 1) # 反转前 k 个元素reverse(k, n - 1) # 反转后 n-k 个元素

贪心

121. 买卖股票的最佳时机

在这里插入图片描述
先考虑最简单的 暴力遍历,即枚举出所有情况,并从中选择最大利润。时间复杂度为 O ( N 2 ) O(N^2) O(N2) 。考虑到题目给定的长度范围 1≤prices.length≤10^5,需要思考更优解法。

  • 由于卖出肯定在买入后,所以 从前往后遍历维护一个最小价格 min_price,肯定是碰到越小价格更有可能利润更大。
  • 由于要求最大利润,所以 维护一个最大利润 max_profit,当天的利润就是当天的价格减去遇到的最低价 price - min_price,遇到更高利润就更新。
class Solution:def maxProfit(self, prices: List[int]) -> int:min_price, max_profit = float('+inf'), 0 # 最低价格,最高利润for price in prices:min_price = min(min_price, price) # 更新最低价格max_profit = max(max_profit, price - min_price) # 更新最高利润return max_profit

122. 买卖股票的最佳时机 II

在这里插入图片描述
基本思路:所有上涨交易日都买卖(赚到所有利润),所有下降交易日都不买卖(绝不亏钱)。

在这里插入图片描述

class Solution:def maxProfit(self, prices: List[int]) -> int:max_profit = 0for i in range(1, len(prices)):if prices[i] - prices[i-1] > 0:max_profit += prices[i] - prices[i-1] # 累积 盈利return max_profit

55. 跳跃游戏

在这里插入图片描述

思路尽可能到达最远位置。如果能到达某个位置,那一定能到达它前面的所有位置。

class Solution:def canJump(self, nums: List[int]) -> bool:n = len(nums)max_index = 0 # 记录最远可跳跃的位置for i in range(n):if i > max_index: # 无法到达 i 位置就无法到达最后下标return Falsemax_index = max(max_index, nums[i] + i) # 更新最远位置if max_index >= n-1:return True

45. 跳跃游戏 II

在这里插入图片描述

  • 贪心策略每次选择能跳得最远的位置,从而尽可能减少跳跃的次数
  • 维护当前跳跃区间:在每一步,会有一个“当前区间”,它表示 从当前跳跃开始,能够到达的最远位置。在区间内,更新最远可以跳到的位置。
  • 跳跃次数:每次更新最远的位置后,意味着完成了一次跳跃,需要跳到下一个区间。
class Solution:def jump(self, nums: List[int]) -> int:jumps = 0  # 跳跃次数current_end = 0  # 当前跳跃区间的右端farthest = 0  # 能跳到的最远位置# 遍历数组,跳跃的次数for i in range(len(nums) - 1):  # 不需要遍历最后一个位置farthest = max(farthest, i + nums[i]) # 更新最远可以到达的位置# 如果当前已经到达了当前跳跃区间的右端if i == current_end:jumps += 1  # 需要跳跃一次current_end = farthest  # 更新跳跃区间的右端# 如果当前跳跃区间的右端已经超过了最后一个位置,直接返回跳跃次数if current_end >= len(nums) - 1:return jumpsreturn jumps

274. H 指数

在这里插入图片描述

  • 排序:首先将 citations 数组按 从大到小排序
  • 遍历排序后的数组:从第一个元素开始,检查每个元素是否满足条件 citations[i] >= i + 1,其中 i + 1 是当前论文的排名。
  • 最大 h 值:最终,最大的 i + 1 使得 citations[i] >= i + 1 即为 h 指数
class Solution:def hIndex(self, citations: List[int]) -> int:citations.sort(reverse=True) # 对引用次数进行降序排序# 遍历已排序的 citations 数组,找到最大 h 指数for i in range(len(citations)):if citations[i] < i + 1:  # 论文 i + 1 应该有 citations[i] 次引用return i  # 返回 h 指数return len(citations)  # 如果所有的论文的引用次数都满足,返回数组长度

前缀 / 后缀

238. 除自身以外数组的乘积

在这里插入图片描述
可以分两步来完成这个任务:

  • 前缀积:首先计算每个位置的前缀积,即从数组的最左侧到当前位置之前所有元素的乘积。这可以通过一个临时数组 answer 来实现,其中 answer[i] 表示 nums[0]nums[i-1] 的乘积。

  • 后缀积:然后计算每个位置的后缀积,即从数组的最右侧到当前位置之后所有元素的乘积。这可以通过另一个临时变量 right 来实现,直接从右到左更新 answer 数组。

class Solution:def productExceptSelf(self, nums: List[int]) -> List[int]:n = len(nums)# 初始化答案数组answer = [1] * n# 计算前缀积,存入 answer 数组left_product = 1for i in range(n):answer[i] = left_productleft_product *= nums[i]# 计算后缀积,直接更新 answer 数组right_product = 1for i in range(n-1, -1, -1):answer[i] *= right_productright_product *= nums[i]return answer

134. 加油站

在这里插入图片描述

双指针

125. 验证回文串

在这里插入图片描述

  • c.lower() 将字符 c 转换为小写。
  • c.isalnum() 判断字符 c 是否是字母或数字。如果是字母或数字,就保留该字符;否则跳过。
  • 通过 字符串的切片操作 [::-1] 获取字符串 filtered_s 的反转版本
class Solution:def isPalindrome(self, s: str) -> bool:# 只保留字母和数字,并转换为小写filtered_s = ''.join(c.lower() for c in s if c.isalnum())# 比较正着读和反着读是否相同return filtered_s == filtered_s[::-1]

双指针:利用 两个指针从字符串的两端开始同时向中间移动,检查字符是否相等,同时跳过所有非字母和数字的字符。

class Solution:def isPalindrome(self, s: str) -> bool:# 初始化左右指针left, right = 0, len(s) - 1while left < right:# 跳过非字母数字字符while left < right and not s[left].isalnum():left += 1while left < right and not s[right].isalnum():right -= 1# 比较字符,忽略大小写if s[left].lower() != s[right].lower():return False# 移动指针left += 1right -= 1return True

滑动窗口

矩阵

哈希表

380. O(1) 时间插入、删除和获取随机元素

在这里插入图片描述
基本思路是结合使用 **哈希表(字典)**和 列表(数组)

  • 插入操作 insert(val)
    • 用一个哈希表(val -> index)来 记录每个元素的值及其在列表中的位置。这样查找和删除元素时都能在 O ( 1 ) O(1) O(1) 时间内完成。
    • 列表 list 用来存储元素,以便可以 快速地随机获取一个元素
  • 删除操作 remove(val)
    • 需要从列表中删除一个元素,并且保证其他元素的顺序尽量不被破坏,同时保持 O ( 1 ) O(1) O(1) 的时间复杂度。
    • 可以通过 将要删除的元素与列表中的最后一个元素交换位置,然后从哈希表中删除该元素。这样删除操作的时间复杂度是 O ( 1 ) O(1) O(1)
  • 随机获取操作 getRandom():利用 列表的下标来随机访问元素,时间复杂度是 O ( 1 ) O(1) O(1)
import randomclass RandomizedSet:def __init__(self):# 哈希表存储值及其索引,列表存储值self.val_to_index = {}self.list = []def insert(self, val: int) -> bool:if val in self.val_to_index:return False  # 如果已经存在,返回 False# 插入操作:将元素添加到列表末尾,并在哈希表中记录该值和索引self.val_to_index[val] = len(self.list)self.list.append(val)return Truedef remove(self, val: int) -> bool:if val not in self.val_to_index:return False  # 如果元素不存在,返回 False# 找到元素的索引index = self.val_to_index[val]# 将要删除的元素与最后一个元素交换位置last_element = self.list[-1]self.list[index] = last_elementself.val_to_index[last_element] = index# 删除该元素self.list.pop()del self.val_to_index[val]return Truedef getRandom(self) -> int:return random.choice(self.list)  # 随机返回列表中的一个元素# Your RandomizedSet object will be instantiated and called as such:
# obj = RandomizedSet()
# param_1 = obj.insert(val)
# param_2 = obj.remove(val)
# param_3 = obj.getRandom()

二叉树

104. 二叉树的最大深度

在这里插入图片描述

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:# 如果当前节点为空,返回深度 0if not root:return 0# 递归计算左子树和右子树的最大深度left_depth = self.maxDepth(root.left)right_depth = self.maxDepth(root.right)# 当前节点的深度是左右子树深度的最大值 + 1return max(left_depth, right_depth) + 1

100. 相同的树

在这里插入图片描述

class Solution:def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:if not p and not q: # 两棵树都为空return Trueelif not p or not q: # 只有一棵树为空return Falseif p.val != q.val: # 两棵树都不空但节点值不同return False# 两棵树都不空且节点值相同,递归比较return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)

226. 翻转二叉树

在这里插入图片描述

分治

回溯

相关文章:

【Python LeetCode】面试经典 150 题

数组 / 字符串快慢指针&#xff08;双指针&#xff09;总结88. 合并两个有序数组27. 移除元素26. 删除有序数组中的重复项80. 删除有序数组中的重复项 II Boyer-Moore 投票算法169. 多数元素扩展&#xff1a;寻找 n/3 多数元素 翻转法189. 轮转数组 贪心121. 买卖股票的最佳时机…...

2011-2019年各省乡镇综合文化站机构数数据

2011-2019年各省乡镇综合文化站机构数数据 1、时间&#xff1a;2011-2019年 2、来源&#xff1a;国家统计局、统计年鉴 3、指标&#xff1a;行政区划代码、地区、年份、乡镇综合文化站机构数 4、范围&#xff1a;31省 5、指标解释&#xff1a;乡镇综合文化站是中国基层文化…...

LeetCode 热题100 226. 翻转二叉树

LeetCode 热题100 | 226. 翻转二叉树 大家好&#xff0c;今天我们来解决一道经典的算法题——翻转二叉树。这道题在 LeetCode 上被标记为简单难度&#xff0c;要求我们翻转一棵二叉树&#xff0c;并返回其根节点。下面我将详细讲解解题思路&#xff0c;并附上 Python 代码实现…...

mysql 拼接多行合并为一行

如图所示&#xff0c;在variety相同的前提下拼接rating为ratingList&#xff0c;year_term为yearTermList sql如下&#xff1a; SELECT variety,GROUP_CONCAT(rating ORDER BY rating SEPARATOR ,) AS ratingList,GROUP_CONCAT(year_term ORDER BY year_term SEPARATOR…...

【Java项目】基于Spring Boot的论坛管理系统

【Java项目】基于Spring Boot的论坛管理系统 技术简介&#xff1a;采用Java技术、Spring Boot框架、MySQL数据库等实现。 系统简介&#xff1a;论坛管理系统是一个基于Web的在线平台&#xff0c;主要分为前台和后台两大功能模块。前台功能模块包括&#xff08;1&#xff09;首…...

unity学习54:图片+精灵+遮罩mask,旧版文本 text 和新的TMP文本

目录 1 图片 image 1.1 如果直接导入image 1.2 图片 image 和精灵 sprite 1.2.1 继续修改上面的格式 texture type 是default 1.2.2 再次关联到UI的 image 物体上就可以了 1.3 图片和遮罩 mask 1.3.1 创建1个父物体和1个子物体&#xff0c;分别都是image 1.3.2 如果父…...

2024年国赛高教杯数学建模D题反潜航空深弹命中概率问题解题全过程文档及程序

2024年国赛高教杯数学建模 D题 反潜航空深弹命中概率问题 原题再现 应用深水炸弹&#xff08;简称深弹&#xff09;反潜&#xff0c;曾是二战时期反潜的重要手段&#xff0c;而随着现代军事技术的发展&#xff0c;鱼雷已成为现代反潜作战的主要武器。但是&#xff0c;在海峡或…...

什么是数字人

什么是数字人 Ultralight-Digital-Human 是一个能在移动设备上实时运行的数字人模型仓库,可能是第一个开源的如此轻量级的数字人模型。 主要特点 轻量级:能够在移动设备上实时运行。开源:代码和模型公开,方便开发者使用和改进。文件结构 根目录: README.md:项目的说明文…...

15.5 基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑

基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑 关键词:RetrievalQA 应用实战、销售知识增强、语义检索优化、上下文感知问答、多源知识融合 1. RetrievalQA 技术原理与销售场景适配 1.1 RetrievalQA 核心工作机制 #mermaid-svg-VL2yIusgl4oprXUr {font-family…...

软件供应链安全工具链研究系列—RASP自适应威胁免疫平台(下篇)

在“软件供应链安全工具链研究系列—RASP自适应威胁免疫平台-上篇”中我们提到了RASP工具的基本能力、原理以及工具的应用场景&#xff0c;了解到了RASP工具在各场景下发挥的价值。那么在当今高强度攻防对抗的大场景下&#xff0c;RASP作为最后一道防线&#xff0c;不论是从高危…...

WordPress网站502错误全面排查与解决指南

502 Bad Gateway错误是WordPress站长最常遇到的服务器问题之一,它意味着服务器作为网关或代理时,未能从上游服务器获取有效响应。针对WP可能出现的502问题,本文提供一些基础到进阶的解决方案供大家参考:) 一、502错误的本质和核心诱因 502错误属于HTTP状态码中的5xx系列,…...

PCL源码分析:曲面法向量采样

文章目录 一、简介二、源码分析三、实现效果参考资料一、简介 曲面法向量点云采样,整个过程如下所述: 1、空间划分:使用递归方法将点云划分为更小的区域, 每次划分选择一个维度(X、Y 或 Z),将点云分为两部分,直到划分区域内的点少于我们指定的数量,开始进行区域随机采…...

HTTP 动态报错码的原因和解决方法

目录 1xx&#xff08;信息性状态码&#xff09; 2xx&#xff08;成功状态码&#xff09; 3xx&#xff08;重定向状态码&#xff09; 4xx&#xff08;客户端错误状态码&#xff09; 5xx&#xff08;服务器错误状态码&#xff09; 参考文章 以下是 HTTP 动态报错码的常见原…...

1分钟用DeepSeek编写一个PDF转Word软件

一、引言 如今&#xff0c;在线工具的普及让PDF转Word成为了一个常见需求&#xff0c;常见的pdf转word工具有收费的wps&#xff0c;免费的有pdfgear&#xff0c;见下文&#xff1a; PDFgear:一款免费的PDF编辑、格式转化软件-CSDN博客 还有网上在线的免费pdf转word工具smallp…...

生成对抗网络(GAN)

生成对抗网络&#xff08;GAN&#xff09;:生成对抗网络是一种深度学习模型&#xff0c;由 Ian Goodfellow 等人在 2014 年提出。GAN由生成器和判别器组成&#xff0c;生成器生成假数据&#xff0c;判别器区分真假数据。两者通过对抗训练不断提升&#xff0c;最终生成器能够生成…...

openlayers结合turf geojson面获取面积和中心点

在 OpenLayers 中绘制 GeoJSON 面要素并计算面积和中心点&#xff0c;可以结合 OpenLayers 的 ol/format/GeoJSON 模块将 GeoJSON 数据转换为 OpenLayers 的 Feature&#xff0c;然后使用 Turf.js 进行计算。示例代码如下 import Map from ol/Map; import View from ol/View; …...

【SRC实战】修改金币数量实现财富自由

01 — 漏洞证明 1、进入阅读奖励 2、此时金币数量0 3、来到新手福利处 4、观看广告获取奖励 5、由于int整型范围-2147483648&#xff5e;2147483647&#xff0c;避免溢出&#xff0c;此处修改请求包中coinNum参数为2147483640 6、返回查看金币数量变为2147483640 02 — 漏洞…...

地理数据可视化:飞线说明(笔记)

//主要代码 //黄色飞线s_data.push({type: lines,zlevel: 2,effect: {//线上的箭头效果show: true,period: 1.5,//控制点的流动速度&#xff0c;数越小流动的速度越快trailLength: 0.1,//动画的拖尾时长// color: #2ef358,color: #ffeb40,symbol: planePath,//控…...

2024最新版鸿蒙纯血原生应用开发教程文档丨学习ArkTS语言-基本语法

ArkTS是HarmonyOS的主要应用开发语言&#xff0c;在TypeScript基础上进行了扩展&#xff0c;保留了其基本风格&#xff0c;并通过增强静态检查和分析来提高程序的稳定性和性能。本教程将帮助开发者掌握ArkTS的核心功能、语法及最佳实践&#xff0c;以便高效地构建高性能移动应用…...

微信小程序-二维码绘制

wxml <view bindlongtap"saveQrcode"><!-- 二维码 --><view style"position: absolute;background-color: #FFFAEC;width: 100%;height: 100vh;"><canvas canvas-id"myQrcode" style"width: 200px; height: 200px;ba…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

Python训练营-Day26-函数专题1:函数定义与参数

题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一个名为 calculate_circle_area 的函数&#xff0c;该函数接收圆的半径 radius 作为参数&#xff0c;并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求&#xff1a;函数接收一个位置参数 radi…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

AWS vs 阿里云:功能、服务与性能对比指南

在云计算领域&#xff0c;Amazon Web Services (AWS) 和阿里云 (Alibaba Cloud) 是全球领先的提供商&#xff0c;各自在功能范围、服务生态系统、性能表现和适用场景上具有独特优势。基于提供的引用[1]-[5]&#xff0c;我将从功能、服务和性能三个方面进行结构化对比分析&#…...