【Python LeetCode】面试经典 150 题
- 数组 / 字符串
- 快慢指针(双指针)总结
- 88. 合并两个有序数组
- 27. 移除元素
- 26. 删除有序数组中的重复项
- 80. 删除有序数组中的重复项 II
- `Boyer-Moore` 投票算法
- 169. 多数元素
- 扩展:寻找 n/3 多数元素
- 翻转法
- 189. 轮转数组
- 贪心
- 121. 买卖股票的最佳时机
- 122. 买卖股票的最佳时机 II
- 55. 跳跃游戏
- 45. 跳跃游戏 II
- 274. H 指数
- 前缀 / 后缀
- 238. 除自身以外数组的乘积
- 134. 加油站
- 双指针
- 125. 验证回文串
- 滑动窗口
- 矩阵
- 哈希表
- 380. O(1) 时间插入、删除和获取随机元素
- 二叉树
- 104. 二叉树的最大深度
- 100. 相同的树
- 226. 翻转二叉树
- 分治
- 回溯
数组 / 字符串
快慢指针(双指针)总结
“快慢指针” 主要用于 数组的原地修改问题,避免额外空间开销,同时保证 O(n) 线性时间复杂度。
| 题目 | 题目要求 | 快指针 i | 慢指针 p |
|---|---|---|---|
| 合并两个有序数组 | nums1 和 nums2 归并排序 | 遍历 nums1 & nums2,从后向前合并 | 指向 nums1 末尾,填充较大值 |
| 移除元素 | nums 中移除 val,保持相对顺序 | 遍历 nums,查找非 val 元素 | 记录下一个非 val 元素存放位置 |
| 删除有序数组中的重复项 | 只保留 1个,相对顺序不变 | 遍历 nums,查找不同的元素 | 记录下一个唯一元素存放位置 |
| 删除有序数组中的重复项 II | 只保留 最多 2 个 | 遍历 nums,查找满足出现≤2次的元素 | 记录下一个可存放元素的位置 |
快慢指针的核心思路:
- 遍历数组(快指针
i负责遍历数组) - 找到符合条件的元素(如不同于前一个元素、出现次数不超过 2 次等)
- 将其存放到正确的位置(
p负责记录符合条件的元素存放位置) - 最终
p代表新的数组长度
88. 合并两个有序数组

下面两行代码就可以解决,
nums1[m:] = nums2 # 把 nums2 拼接到 nums1 从下标 m 开始后面
nums1.sort() # 默认升序排序
不过还是规规矩矩用双指针法写一下吧,

class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""# 指针分别指向 nums1 和 nums2 的最后一个有效元素p1, p2 = m - 1, n - 1# 指针 p 指向合并后数组的最后一个位置p = m + n - 1# 从后往前合并while p1 >= 0 and p2 >= 0:if nums1[p1] > nums2[p2]:nums1[p] = nums1[p1]p1 -= 1else:nums1[p] = nums2[p2]p2 -= 1p -= 1# 如果 nums2 还有剩余元素,填充到 nums1while p2 >= 0:nums1[p] = nums2[p2]p2 -= 1p -= 1
27. 移除元素

class Solution:def removeElement(self, nums: List[int], val: int) -> int:# 维护一个慢指针 k 指向下一个存放非 val 元素的位置k = 0 # 遍历数组for num in nums:if num != val: # 只有当元素不等于 val 时,才放入 nums[k] 位置nums[k] = numk += 1 # k 向前移动return k # 返回新的数组长度
26. 删除有序数组中的重复项

class Solution:def removeDuplicates(self, nums: List[int]) -> int:# 慢指针 k 记录下一个存放唯一元素的位置k = 1 # 遍历数组for i in range(1, len(nums)):if nums[i] != nums[i - 1]: # 只有当当前元素不等于前一个元素时才存入nums[k] = nums[i]k += 1 # 移动慢指针return k # 返回唯一元素的个数
80. 删除有序数组中的重复项 II

class Solution:def removeDuplicates(self, nums: List[int]) -> int:"""Do not return anything, modify nums in-place instead."""if len(nums) <= 2:return len(nums) # 数组长度小于等于2时,直接返回# 指针 p 记录下一个存放元素的位置p = 2for i in range(2, len(nums)):if nums[i] != nums[p - 2]: # 只有当 nums[i] ≠ nums[p-2] 时,才可以保留nums[p] = nums[i]p += 1 # 递增存放位置return p # p 就是去重后的数组长度
Boyer-Moore 投票算法
Boyer-Moore 投票算法(Boyer-Moore Voting Algorithm) 是一种用于在 数组中寻找出现次数超过 ⌊n/2⌋ 的元素(即 多数元素)的高效算法。
该算法的 时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1),只需要一次遍历和常数级额外空间,非常高效。
- 若一个元素出现超过
n/2次,它的 票数净增量一定是正的。- 其他元素的 抵消票数永远无法超过多数元素的总数。
- 这样,多数元素的 最终
count绝对不会归零,即使在过程中count可能降为零,换新的candidate后,最终的candidate仍然是多数元素。
169. 多数元素

可以使用 Boyer-Moore 投票算法 来 高效找出多数元素。该算法的时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)。
- 核心思想:抵消计数,如果某个元素是多数元素(出现次数
> ⌊n/2⌋),那么它最终一定会成为 唯一剩下的候选人。 - 计数规则:遇到相同的元素,
count +1;遇到不同的元素,count -1。当count == 0时,换一个候选人。
由于 多数元素的出现次数超过 ⌊n/2⌋,即使被其他元素抵消,也最终会留在 candidate 里。
class Solution:def majorityElement(self, nums: List[int]) -> int:"""Boyer-Moore 投票算法"""candidate = None # 维护一个 候选元素count = 0 # 计数器for num in nums:if count == 0:candidate = num # 选择新的候选多数元素count += (1 if num == candidate else -1) # 增加票数 或 抵消票数return candidate # 因为题目说多数元素一定存在,最终 candidate 即为结果
扩展:寻找 n/3 多数元素
如果需要找 出现次数超过 n/3 的元素,则可以维护 两个候选人 和 两个计数器:
class Solution:def majorityElement(self, nums: List[int]) -> List[int]:candidate1, candidate2, count1, count2 = None, None, 0, 0for num in nums:if count1 == 0:candidate1, count1 = num, 1elif count2 == 0:candidate2, count2 = num, 1elif num == candidate1: # 投票给候选人 1count1 += 1elif num == candidate2: # 投票给候选人 2count2 += 1else: # 没有投票给两个候选人中的任何一人count1 -= 1count2 -= 1# 第二遍遍历,检查候选人是否真的超过 n/3return [c for c in (candidate1, candidate2) if nums.count(c) > len(nums) // 3]
翻转法
翻转法中,交换变量使用 a, b = b, a,本质上是 元组打包(tuple packing)+ 元组解包(tuple unpacking),它的底层实现依赖于:栈操作+引用变更,不会创建新的对象,只是 交换变量指向的内存地址。
ROT_TWO是 Python 字节码中的一个栈操作指令,用于 交换栈顶的两个元素。case ROT_TWO: {PyObject *top = STACK_POP(); // 取出栈顶元素(指针引用)PyObject *second = STACK_POP(); // 取出次栈顶元素(指针引用)STACK_PUSH(top); // 先压入原来的栈顶STACK_PUSH(second); // 再压入原来的次栈顶DISPATCH(); }
PyObject *top和PyObject *second只是指向原来 Python 对象的指针,并没有创建新的对象。STACK_POP()只是修改了栈指针,而不是拷贝对象。STACK_PUSH()只是把相同的指针重新放回去,没有额外的内存分配。
因此,交换是 “原地” 进行的,不涉及对象复制或新分配。
189. 轮转数组

翻转法 利用 三次反转 完成 原地修改,时间 O ( n ) O(n) O(n),空间 O ( 1 ) O(1) O(1),高效且简洁。
class Solution:def rotate(self, nums: List[int], k: int) -> None:"""Do not return anything, modify nums in-place instead."""n = len(nums)k = k % n # 防止 k 大于 n,取模优化# 定义反转函数def reverse(start: int, end: int):while start < end:nums[start], nums[end] = nums[end], nums[start]start += 1end -= 1reverse(0, n - 1) # 反转整个数组reverse(0, k - 1) # 反转前 k 个元素reverse(k, n - 1) # 反转后 n-k 个元素
贪心
121. 买卖股票的最佳时机

先考虑最简单的 暴力遍历,即枚举出所有情况,并从中选择最大利润。时间复杂度为 O ( N 2 ) O(N^2) O(N2) 。考虑到题目给定的长度范围 1≤prices.length≤10^5,需要思考更优解法。
- 由于卖出肯定在买入后,所以 从前往后遍历维护一个最小价格
min_price,肯定是碰到越小价格更有可能利润更大。 - 由于要求最大利润,所以 维护一个最大利润
max_profit,当天的利润就是当天的价格减去遇到的最低价price - min_price,遇到更高利润就更新。
class Solution:def maxProfit(self, prices: List[int]) -> int:min_price, max_profit = float('+inf'), 0 # 最低价格,最高利润for price in prices:min_price = min(min_price, price) # 更新最低价格max_profit = max(max_profit, price - min_price) # 更新最高利润return max_profit
122. 买卖股票的最佳时机 II

基本思路:所有上涨交易日都买卖(赚到所有利润),所有下降交易日都不买卖(绝不亏钱)。

class Solution:def maxProfit(self, prices: List[int]) -> int:max_profit = 0for i in range(1, len(prices)):if prices[i] - prices[i-1] > 0:max_profit += prices[i] - prices[i-1] # 累积 盈利return max_profit
55. 跳跃游戏

思路:尽可能到达最远位置。如果能到达某个位置,那一定能到达它前面的所有位置。
class Solution:def canJump(self, nums: List[int]) -> bool:n = len(nums)max_index = 0 # 记录最远可跳跃的位置for i in range(n):if i > max_index: # 无法到达 i 位置就无法到达最后下标return Falsemax_index = max(max_index, nums[i] + i) # 更新最远位置if max_index >= n-1:return True
45. 跳跃游戏 II

- 贪心策略:每次选择能跳得最远的位置,从而尽可能减少跳跃的次数。
- 维护当前跳跃区间:在每一步,会有一个“当前区间”,它表示 从当前跳跃开始,能够到达的最远位置。在区间内,更新最远可以跳到的位置。
- 跳跃次数:每次更新最远的位置后,意味着完成了一次跳跃,需要跳到下一个区间。
class Solution:def jump(self, nums: List[int]) -> int:jumps = 0 # 跳跃次数current_end = 0 # 当前跳跃区间的右端farthest = 0 # 能跳到的最远位置# 遍历数组,跳跃的次数for i in range(len(nums) - 1): # 不需要遍历最后一个位置farthest = max(farthest, i + nums[i]) # 更新最远可以到达的位置# 如果当前已经到达了当前跳跃区间的右端if i == current_end:jumps += 1 # 需要跳跃一次current_end = farthest # 更新跳跃区间的右端# 如果当前跳跃区间的右端已经超过了最后一个位置,直接返回跳跃次数if current_end >= len(nums) - 1:return jumpsreturn jumps
274. H 指数

- 排序:首先将
citations数组按 从大到小排序。 - 遍历排序后的数组:从第一个元素开始,检查每个元素是否满足条件
citations[i] >= i + 1,其中i + 1是当前论文的排名。 - 最大
h值:最终,最大的i + 1使得citations[i] >= i + 1即为h指数。
class Solution:def hIndex(self, citations: List[int]) -> int:citations.sort(reverse=True) # 对引用次数进行降序排序# 遍历已排序的 citations 数组,找到最大 h 指数for i in range(len(citations)):if citations[i] < i + 1: # 论文 i + 1 应该有 citations[i] 次引用return i # 返回 h 指数return len(citations) # 如果所有的论文的引用次数都满足,返回数组长度
前缀 / 后缀
238. 除自身以外数组的乘积

可以分两步来完成这个任务:
-
前缀积:首先计算每个位置的前缀积,即从数组的最左侧到当前位置之前所有元素的乘积。这可以通过一个临时数组
answer来实现,其中answer[i]表示nums[0]到nums[i-1]的乘积。 -
后缀积:然后计算每个位置的后缀积,即从数组的最右侧到当前位置之后所有元素的乘积。这可以通过另一个临时变量
right来实现,直接从右到左更新answer数组。
class Solution:def productExceptSelf(self, nums: List[int]) -> List[int]:n = len(nums)# 初始化答案数组answer = [1] * n# 计算前缀积,存入 answer 数组left_product = 1for i in range(n):answer[i] = left_productleft_product *= nums[i]# 计算后缀积,直接更新 answer 数组right_product = 1for i in range(n-1, -1, -1):answer[i] *= right_productright_product *= nums[i]return answer
134. 加油站

双指针
125. 验证回文串

c.lower()将字符c转换为小写。c.isalnum()判断字符c是否是字母或数字。如果是字母或数字,就保留该字符;否则跳过。- 通过 字符串的切片操作
[::-1]获取字符串filtered_s的反转版本。
class Solution:def isPalindrome(self, s: str) -> bool:# 只保留字母和数字,并转换为小写filtered_s = ''.join(c.lower() for c in s if c.isalnum())# 比较正着读和反着读是否相同return filtered_s == filtered_s[::-1]
双指针:利用 两个指针从字符串的两端开始同时向中间移动,检查字符是否相等,同时跳过所有非字母和数字的字符。
class Solution:def isPalindrome(self, s: str) -> bool:# 初始化左右指针left, right = 0, len(s) - 1while left < right:# 跳过非字母数字字符while left < right and not s[left].isalnum():left += 1while left < right and not s[right].isalnum():right -= 1# 比较字符,忽略大小写if s[left].lower() != s[right].lower():return False# 移动指针left += 1right -= 1return True
滑动窗口
矩阵
哈希表
380. O(1) 时间插入、删除和获取随机元素

基本思路是结合使用 **哈希表(字典)**和 列表(数组)。
- 插入操作
insert(val):- 用一个哈希表(
val -> index)来 记录每个元素的值及其在列表中的位置。这样查找和删除元素时都能在 O ( 1 ) O(1) O(1) 时间内完成。 - 列表
list用来存储元素,以便可以 快速地随机获取一个元素。
- 用一个哈希表(
- 删除操作
remove(val):- 需要从列表中删除一个元素,并且保证其他元素的顺序尽量不被破坏,同时保持 O ( 1 ) O(1) O(1) 的时间复杂度。
- 可以通过 将要删除的元素与列表中的最后一个元素交换位置,然后从哈希表中删除该元素。这样删除操作的时间复杂度是 O ( 1 ) O(1) O(1)。
- 随机获取操作
getRandom():利用 列表的下标来随机访问元素,时间复杂度是 O ( 1 ) O(1) O(1)。
import randomclass RandomizedSet:def __init__(self):# 哈希表存储值及其索引,列表存储值self.val_to_index = {}self.list = []def insert(self, val: int) -> bool:if val in self.val_to_index:return False # 如果已经存在,返回 False# 插入操作:将元素添加到列表末尾,并在哈希表中记录该值和索引self.val_to_index[val] = len(self.list)self.list.append(val)return Truedef remove(self, val: int) -> bool:if val not in self.val_to_index:return False # 如果元素不存在,返回 False# 找到元素的索引index = self.val_to_index[val]# 将要删除的元素与最后一个元素交换位置last_element = self.list[-1]self.list[index] = last_elementself.val_to_index[last_element] = index# 删除该元素self.list.pop()del self.val_to_index[val]return Truedef getRandom(self) -> int:return random.choice(self.list) # 随机返回列表中的一个元素# Your RandomizedSet object will be instantiated and called as such:
# obj = RandomizedSet()
# param_1 = obj.insert(val)
# param_2 = obj.remove(val)
# param_3 = obj.getRandom()
二叉树
104. 二叉树的最大深度

# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:# 如果当前节点为空,返回深度 0if not root:return 0# 递归计算左子树和右子树的最大深度left_depth = self.maxDepth(root.left)right_depth = self.maxDepth(root.right)# 当前节点的深度是左右子树深度的最大值 + 1return max(left_depth, right_depth) + 1
100. 相同的树

class Solution:def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:if not p and not q: # 两棵树都为空return Trueelif not p or not q: # 只有一棵树为空return Falseif p.val != q.val: # 两棵树都不空但节点值不同return False# 两棵树都不空且节点值相同,递归比较return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)
226. 翻转二叉树

分治
回溯
相关文章:
【Python LeetCode】面试经典 150 题
数组 / 字符串快慢指针(双指针)总结88. 合并两个有序数组27. 移除元素26. 删除有序数组中的重复项80. 删除有序数组中的重复项 II Boyer-Moore 投票算法169. 多数元素扩展:寻找 n/3 多数元素 翻转法189. 轮转数组 贪心121. 买卖股票的最佳时机…...
2011-2019年各省乡镇综合文化站机构数数据
2011-2019年各省乡镇综合文化站机构数数据 1、时间:2011-2019年 2、来源:国家统计局、统计年鉴 3、指标:行政区划代码、地区、年份、乡镇综合文化站机构数 4、范围:31省 5、指标解释:乡镇综合文化站是中国基层文化…...
LeetCode 热题100 226. 翻转二叉树
LeetCode 热题100 | 226. 翻转二叉树 大家好,今天我们来解决一道经典的算法题——翻转二叉树。这道题在 LeetCode 上被标记为简单难度,要求我们翻转一棵二叉树,并返回其根节点。下面我将详细讲解解题思路,并附上 Python 代码实现…...
mysql 拼接多行合并为一行
如图所示,在variety相同的前提下拼接rating为ratingList,year_term为yearTermList sql如下: SELECT variety,GROUP_CONCAT(rating ORDER BY rating SEPARATOR ,) AS ratingList,GROUP_CONCAT(year_term ORDER BY year_term SEPARATOR…...
【Java项目】基于Spring Boot的论坛管理系统
【Java项目】基于Spring Boot的论坛管理系统 技术简介:采用Java技术、Spring Boot框架、MySQL数据库等实现。 系统简介:论坛管理系统是一个基于Web的在线平台,主要分为前台和后台两大功能模块。前台功能模块包括(1)首…...
unity学习54:图片+精灵+遮罩mask,旧版文本 text 和新的TMP文本
目录 1 图片 image 1.1 如果直接导入image 1.2 图片 image 和精灵 sprite 1.2.1 继续修改上面的格式 texture type 是default 1.2.2 再次关联到UI的 image 物体上就可以了 1.3 图片和遮罩 mask 1.3.1 创建1个父物体和1个子物体,分别都是image 1.3.2 如果父…...
2024年国赛高教杯数学建模D题反潜航空深弹命中概率问题解题全过程文档及程序
2024年国赛高教杯数学建模 D题 反潜航空深弹命中概率问题 原题再现 应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或…...
什么是数字人
什么是数字人 Ultralight-Digital-Human 是一个能在移动设备上实时运行的数字人模型仓库,可能是第一个开源的如此轻量级的数字人模型。 主要特点 轻量级:能够在移动设备上实时运行。开源:代码和模型公开,方便开发者使用和改进。文件结构 根目录: README.md:项目的说明文…...
15.5 基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑
基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑 关键词:RetrievalQA 应用实战、销售知识增强、语义检索优化、上下文感知问答、多源知识融合 1. RetrievalQA 技术原理与销售场景适配 1.1 RetrievalQA 核心工作机制 #mermaid-svg-VL2yIusgl4oprXUr {font-family…...
软件供应链安全工具链研究系列—RASP自适应威胁免疫平台(下篇)
在“软件供应链安全工具链研究系列—RASP自适应威胁免疫平台-上篇”中我们提到了RASP工具的基本能力、原理以及工具的应用场景,了解到了RASP工具在各场景下发挥的价值。那么在当今高强度攻防对抗的大场景下,RASP作为最后一道防线,不论是从高危…...
WordPress网站502错误全面排查与解决指南
502 Bad Gateway错误是WordPress站长最常遇到的服务器问题之一,它意味着服务器作为网关或代理时,未能从上游服务器获取有效响应。针对WP可能出现的502问题,本文提供一些基础到进阶的解决方案供大家参考:) 一、502错误的本质和核心诱因 502错误属于HTTP状态码中的5xx系列,…...
PCL源码分析:曲面法向量采样
文章目录 一、简介二、源码分析三、实现效果参考资料一、简介 曲面法向量点云采样,整个过程如下所述: 1、空间划分:使用递归方法将点云划分为更小的区域, 每次划分选择一个维度(X、Y 或 Z),将点云分为两部分,直到划分区域内的点少于我们指定的数量,开始进行区域随机采…...
HTTP 动态报错码的原因和解决方法
目录 1xx(信息性状态码) 2xx(成功状态码) 3xx(重定向状态码) 4xx(客户端错误状态码) 5xx(服务器错误状态码) 参考文章 以下是 HTTP 动态报错码的常见原…...
1分钟用DeepSeek编写一个PDF转Word软件
一、引言 如今,在线工具的普及让PDF转Word成为了一个常见需求,常见的pdf转word工具有收费的wps,免费的有pdfgear,见下文: PDFgear:一款免费的PDF编辑、格式转化软件-CSDN博客 还有网上在线的免费pdf转word工具smallp…...
生成对抗网络(GAN)
生成对抗网络(GAN):生成对抗网络是一种深度学习模型,由 Ian Goodfellow 等人在 2014 年提出。GAN由生成器和判别器组成,生成器生成假数据,判别器区分真假数据。两者通过对抗训练不断提升,最终生成器能够生成…...
openlayers结合turf geojson面获取面积和中心点
在 OpenLayers 中绘制 GeoJSON 面要素并计算面积和中心点,可以结合 OpenLayers 的 ol/format/GeoJSON 模块将 GeoJSON 数据转换为 OpenLayers 的 Feature,然后使用 Turf.js 进行计算。示例代码如下 import Map from ol/Map; import View from ol/View; …...
【SRC实战】修改金币数量实现财富自由
01 — 漏洞证明 1、进入阅读奖励 2、此时金币数量0 3、来到新手福利处 4、观看广告获取奖励 5、由于int整型范围-2147483648~2147483647,避免溢出,此处修改请求包中coinNum参数为2147483640 6、返回查看金币数量变为2147483640 02 — 漏洞…...
地理数据可视化:飞线说明(笔记)
//主要代码 //黄色飞线s_data.push({type: lines,zlevel: 2,effect: {//线上的箭头效果show: true,period: 1.5,//控制点的流动速度,数越小流动的速度越快trailLength: 0.1,//动画的拖尾时长// color: #2ef358,color: #ffeb40,symbol: planePath,//控…...
2024最新版鸿蒙纯血原生应用开发教程文档丨学习ArkTS语言-基本语法
ArkTS是HarmonyOS的主要应用开发语言,在TypeScript基础上进行了扩展,保留了其基本风格,并通过增强静态检查和分析来提高程序的稳定性和性能。本教程将帮助开发者掌握ArkTS的核心功能、语法及最佳实践,以便高效地构建高性能移动应用…...
微信小程序-二维码绘制
wxml <view bindlongtap"saveQrcode"><!-- 二维码 --><view style"position: absolute;background-color: #FFFAEC;width: 100%;height: 100vh;"><canvas canvas-id"myQrcode" style"width: 200px; height: 200px;ba…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
