【华为OD机考】华为OD笔试真题解析(15)--异常的打卡记录
题目描述
考勤记录是分析和考核职工工作时间利用情况的原始依据,也是计算职工工资的原始依据,为了正确地计算职工工资和监督工资基金使用情况,公司决定对员工的手机打卡记录进行异常排查。
如果出现以下两种情况,则认为打卡异常:
- 实际设备号与注册设备号不一样;
- 同一个员工的两个打卡记录的时间小于60分钟并且打卡距离超过5km。
给定打卡记录的字符串数组clockRecords(每个打卡记录组成为:工号、时间(分钟)、打卡距离(km)、实际设备号、注册设备号),返回其中异常的打卡记录(按输入顺序输出)。
输入描述
第一行输入为N,表示打卡记录数;之后的N行表示打卡记录,每一行表示一条打卡记录。
例如:
2
100000,10,1,ABCD,ABCD
100000,50,10,ABCD,ABCD
输出描述
输出为异常的打卡记录,例如:
100000,10,1,ABCD,ABCD;100000,50,10,ABCD,ABCD
备注
clockRecords长度 <= 1000clockRecords[i]格式:{id},{time},{distance},{actualDeviceNumber},{registeredDeviceNumber}id由6位数字组成time由整数组成,范围为0~1000distance由整数组成,范围为0~100actualDeviceNumber和registeredDeviceNumber由4位大写字母组成
示例描述
示例一
输入:
2
100000,10,1,ABCD,ABCD
100000,50,10,ABCD,ABCD
输出:
100000,10,1,ABCD,ABCD;100000,50,10,ABCD,ABCD
说明:
第一条记录是异常的,因为第二条记录与它的间隔不超过60分钟,但是打卡距离超过了5km,同理第二条记录也是异常的。
示例二
输入:
2
100000,10,1,ABCD,ABCD
100000,80,10,ABCE,ABCD
输出:
100000,80,10,ABCE,ABCD
说明:
第二条记录的注册设备号与打卡设备号不一致,所以是异常记录。
示例三
输入:
2
100000,10,1,ABCD,ABCD
100000,80,10,ABCE,ABCE
输出:
null
说明:
无异常打卡记录,所以返回null
解题思路
- 用对象
EmployeeRecord存储打卡记录,并先判断实际设备号与注册设备号是否一致。 - 将打卡记录存储在对象列表中
- 遍历打卡记录的列表:
- 计算打卡时间
- 计算打卡距离
- 如果两个打卡记录时间小于60,并且打卡距离超过5km,打卡异常,设置
vaild为False
- 得到打卡异常的记录并返回字符串。
解题代码
def solve_method(clock_records):employee_records = []for record in clock_records:employee_record = EmployeeRecord(record[0], record[1], record[2], record[3], record[4])employee_record.set_vaild(employee_record.check_device_number())employee_records.append(employee_record)for i in range(len(employee_records)):for j in range(i + 1, len(employee_records)):if employee_records[i].id == employee_records[j].id:# 计算打卡时间time_diff = abs(employee_records[i].time - employee_records[j].time)# 计算打卡距离distance_diff = abs(employee_records[i].distance - employee_records[j].distance)# 如果两个打卡记录时间小于60,并且打卡距离超过5km,打卡异常if time_diff < 60 and distance_diff > 5:employee_records[i].vaild = Falseemployee_records[j].vaild = False# 得到打卡异常的记录result = ";".join(str(record) for record in employee_records if not record.vaild)return "null" if len(result) == 0 else resultclass EmployeeRecord:def __init__(self, id, time, distance, actual_device_number, registered_device_number):self.id = idself.time = timeself.distance = distanceself.actual_device_number = actual_device_numberself.registered_device_number = registered_device_number# 打卡是否合法self.vaild = Truedef set_vaild(self, vaild):self.vaild = vailddef __str__(self):return f"{self.id},{self.time},{self.distance},{self.actual_device_number},{self.registered_device_number}"def check_device_number(self):# 实际设备号与注册设备号不一致,打卡异常if self.actual_device_number == self.registered_device_number:return Truereturn Falseif __name__ == '__main__':clockRecords = [["100000", 10, 1, "ABCD", "ABCD"],["100000", 50, 10, "ABCD", "ABCD"]]assert solve_method(clockRecords) == "100000,10,1,ABCD,ABCD;100000,50,10,ABCD,ABCD"clockRecords = [["100000", 10, 1, "ABCD", "ABCD"],["100000", 80, 10, "ABCE", "ABCD"]]assert solve_method(clockRecords) == "100000,80,10,ABCE,ABCD"clockRecords = [["100000", 10, 1, "ABCD", "ABCD"],["100000", 80, 10, "ABCE", "ABCE"]]assert solve_method(clockRecords) == "null"

相关文章:
【华为OD机考】华为OD笔试真题解析(15)--异常的打卡记录
题目描述 考勤记录是分析和考核职工工作时间利用情况的原始依据,也是计算职工工资的原始依据,为了正确地计算职工工资和监督工资基金使用情况,公司决定对员工的手机打卡记录进行异常排查。 如果出现以下两种情况,则认为打卡异常…...
跟我学C++中级篇——定时器的设计
一、定时器 谈到定时器,理论上讲是各种语言和各种设计都无法避开的一个技术点。对于定时器来说,表面上就是一种时间间隔的处理约定,但对程序来说,可能就是设计层面、接口层面和库或框架以及系统应用的一个大集合。不同的系统&…...
HTTP 请求时传递多部分表单数据
HTTP 请求时传递多部分表单数据(multipart/form-data) --data-raw $------demo11111\r\nContent-Disposition: form-data; name"Filedata"; filename"截屏2025-02-27 15.45.46.png"\r\nContent-Type: image/png\r\n\r\n\r\n------d…...
第J3-1周:DenseNet算法 实现乳腺癌识别
文章目录 一、前言二、前期准备1.设置GPU2.划分数据集 三、搭建网络模型1.DenseLayer模块2.DenseBlock模块3.Transition模块4.构建DenseNet5.构建densenet121 四、训练模型1.编写训练函数2.编写测试函数3.正式训练 五、结果可视化1.Loss与Accuracy图2.模型评估 总结:…...
Mac 版 本地部署deepseek ➕ RAGflow 知识库搭建流程分享(附问题解决方法)
安装: 1、首先按照此视频的流程一步一步进行安装:(macos版)ragflowdeepseek 私域知识库搭建流程分享_哔哩哔哩_bilibili 2、RAGflow 官网文档指南:https://ragflow.io 3、RAGflow 下载地址:https://github.com/infi…...
【解决】OnTriggerEnter/OnTriggerExit 调用匿名委托误区的问题
开发平台:Unity 开发语言:CSharp 6.0 开发工具:Visual Studio 2022 问题背景 public void OnTriggerEnter(Collider collider) {output.OnInteractionNoticed () > OnInteractionTriggered?.Invoke(); }public void OnTriggerExit(C…...
vscode集成DeepSeek
vscode 扩展 安装 Cline Meet Cline,一个可以使用你的CLI和编辑器的AI助手。 得益于 Claude 3.5 Sonnet的代理编码功能,Cline 可以逐步处理复杂的软件开发任务。借助让他创建和编辑文件、探索大型项目、使用浏览器和执行终端命令(在您授予权限后)的工具&…...
MapReduce编程模型
MapReduce编程模型 理解MapReduce编程模型独立完成一个MapReduce程序并运行成功了解MapReduce工程流程掌握并描述出shuffle全过程(面试)独立编写课堂及作业中的MR程序理解并解决数据倾斜 1. MapReduce编程模型 Hadoop架构图 Hadoop由HDFS分布式存储、M…...
SQL server2022的详细安装流程以及简单使用
鉴于SQL Server2008R2版本过于老旧,本文主要讲述如何安装SQL Server 2022。 本文主要详细介绍SQL server2022的详细安装流程以及简单使用,以《数据库系统概论(第5版)》的第79页—第80页为例,详细介绍如何使用SQL serv…...
Linux的诞生:一场自由与协作的技术革命
Linux的诞生:一场自由与协作的技术革命 在今天的互联网世界,Linux几乎无处不在——从智能手机(Android内核)到超级计算机,从云计算平台到家用路由器,它的身影渗透在技术的各个角落。但这样一个改变世界的操…...
Pytorch为什么 nn.CrossEntropyLoss = LogSoftmax + nn.NLLLoss?
为什么 nn.CrossEntropyLoss LogSoftmax nn.NLLLoss? 在使用 PyTorch 时,我们经常听说 nn.CrossEntropyLoss 是 LogSoftmax 和 nn.NLLLoss 的组合。这句话听起来简单,但背后到底是怎么回事?为什么这两个分开的功能加起来就等于…...
Go入门之文件
以只读方式打开文件 package mainimport ("fmt""io""os" )func main() {file, err : os.Open("./main.go")defer file.Close()if err ! nil {fmt.Println(err)return}fmt.Println(file)var tempSlice make([]byte, 128)var strSlice…...
基因型—环境两向表数据分析——品种生态区划分
参考资料:农作物品种试验数据管理与分析 用于品种生态区划分的GGE双标图有两种功能图:试点向量功能图和“谁赢在哪里”功能图。双标图的具体模型基于SD定标和h加权和试点中心化的数据。本例中籽粒产量的GGE双标图仅解释了G和GE总变异的53.6%,…...
Leetcode2414:最长的字母序连续子字符串的长度
题目描述: 字母序连续字符串 是由字母表中连续字母组成的字符串。换句话说,字符串 "abcdefghijklmnopqrstuvwxyz" 的任意子字符串都是 字母序连续字符串 。 例如,"abc" 是一个字母序连续字符串,而 "ac…...
React(12)案例前期准备
1、创建项目 npx creat-react-app xxx 这里注意 react版本过高会导致antd组件无法安装 需要手动修改pagejson文件中的react和react-demo版本号为 18.2.0 npm i 在配置别名路径 创建craco文件 const path require("path"); module.exports {webpack: {alias: …...
2025年2月28日(RAG)
从图片中的内容来看,用户提到的“RAG”实际上是“Retrieval-Augmented Generation”的缩写,中文称为“检索增强生成”。这是一种结合了检索(Retrieval)和生成(Generation)的技术,用于增强自然语…...
python-leetcode-寻找重复数
287. 寻找重复数 - 力扣(LeetCode) class Solution:def findDuplicate(self, nums: List[int]) -> int:# Step 1: 找到环的相遇点slow nums[0]fast nums[0]# 使用快慢指针,直到相遇while True:slow nums[slow] # 慢指针走一步fast nu…...
Vue 3 中,如果 public 目录下的 .js 文件中有一个函数执行后生成数据,并希望将这些数据传递到组件中
在 Vue 3 中,如果 public 目录下的 .js 文件中有一个函数执行后生成数据,并希望将这些数据传递到组件中,可以使用 window.postMessage,但需要结合具体场景。以下是不同方法的详细说明: 方法 1:使用 window…...
ai大模型自动化测试-TensorFlow Testing 测试模型实例
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍: 测试流程 测试计划制定 确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准…...
初阶MySQL(两万字全面解析)
文章目录 1.初识MySQL1.1数据库1.2查看数据库1.3创建数据库1.4字符集编码和排序规则1.5修改数据库1.6删除数据库 2.MySQL常用数据类型和表的操作2.(一)常用数据类型1.数值类2.字符串类型3.二进制类型4.日期类型 2.(二)表的操作1查看指定库中所有表2.创建表 3.查看表结构和查看表…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
