第J3-1周:DenseNet算法 实现乳腺癌识别
文章目录
- 一、前言
- 二、前期准备
- 1.设置GPU
- 2.划分数据集
- 三、搭建网络模型
- 1.DenseLayer模块
- 2.DenseBlock模块
- 3.Transition模块
- 4.构建DenseNet
- 5.构建densenet121
- 四、训练模型
- 1.编写训练函数
- 2.编写测试函数
- 3.正式训练
- 五、结果可视化
- 1.Loss与Accuracy图
- 2.模型评估
- 总结:
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、前言
二、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore") ## 忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type=‘cpu’)
import os, PIL, random, pathlibdata_dir = './J3-data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames
[‘.DS_Store’, ‘0’, ‘1’]
train_transforms = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolder
Number of datapoints: 13403
Root location: J3-data
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
total_data.class_to_idx
{‘0’: 0, ‘1’: 1}
2.划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x17fc70760>,
<torch.utils.data.dataset.Subset at 0x17fc70430>)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True)
for X, y in test_dl:print("Shape of X [N, C, H, W]:", X.shape)print("Shape of y:", y.shape, y.dtype)break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64
三、搭建网络模型
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
1.DenseLayer模块
class DenseLayer(nn.Sequential):def __init__(self, in_channel, growth_rate, bn_size, drop_rate):super(DenseLayer, self).__init__()self.add_module('norm1', nn.BatchNorm2d(in_channel))self.add_module('relu1', nn.ReLU(inplace=True))self.add_module('conv1', nn.Conv2d(in_channel, bn_size*growth_rate,kernel_size=1, stride=1, bias=False))self.add_module('norm2', nn.BatchNorm2d(bn_size*growth_rate))self.add_module('relu2', nn.ReLU(inplace=True))self.add_module('conv2', nn.Conv2d(bn_size*growth_rate, growth_rate,kernel_size=3, stride=1, padding=1, bias=False))self.drop_rate = drop_ratedef forward(self, x):new_feature = super(DenseLayer, self).forward(x)if self.drop_rate>0:new_feature = F.dropout(new_feature, p=self.drop_rate, training=self.training)return torch.cat([x, new_feature], 1)
2.DenseBlock模块
''' DenseBlock '''
class DenseBlock(nn.Sequential):def __init__(self, num_layers, in_channel, bn_size, growth_rate, drop_rate):super(DenseBlock, self).__init__()for i in range(num_layers):layer = DenseLayer(in_channel+i*growth_rate, growth_rate, bn_size, drop_rate)self.add_module('denselayer%d'%(i+1,), layer)
3.Transition模块
''' Transition layer between two adjacent DenseBlock '''
class Transition(nn.Sequential):def __init__(self, in_channel, out_channel):super(Transition, self).__init__()self.add_module('norm', nn.BatchNorm2d(in_channel))self.add_module('relu', nn.ReLU(inplace=True))self.add_module('conv', nn.Conv2d(in_channel, out_channel,kernel_size=1, stride=1, bias=False))self.add_module('pool', nn.AvgPool2d(2, stride=2))
4.构建DenseNet
class DenseNet(nn.Module):def __init__(self, growth_rate=32, block_config=(6,12,24,16), init_channel=64, bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):''':param growth_rate: (int) number of filters used in DenseLayer, `k` in the paper:param block_config: (list of 4 ints) number of layers in eatch DenseBlock:param init_channel: (int) number of filters in the first Conv2d:param bn_size: (int) the factor using in the bottleneck layer:param compression_rate: (float) the compression rate used in Transition Layer:param drop_rate: (float) the drop rate after each DenseLayer:param num_classes: (int) 待分类的类别数'''super(DenseNet, self).__init__()# first Conv2dself.features = nn.Sequential(OrderedDict([('conv0', nn.Conv2d(3, init_channel, kernel_size=7, stride=2, padding=3, bias=False)),('norm0', nn.BatchNorm2d(init_channel)),('relu0', nn.ReLU(inplace=True)),('pool0', nn.MaxPool2d(3, stride=2, padding=1))]))# DenseBlocknum_features = init_channelfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)self.features.add_module('denseblock%d'%(i+1), block)num_features += num_layers*growth_rateif i != len(block_config)-1:transition = Transition(num_features, int(num_features*compression_rate))self.features.add_module('transition%d'%(i+1), transition)num_features = int(num_features*compression_rate)# final BN+ReLUself.features.add_module('norm5', nn.BatchNorm2d(num_features))self.features.add_module('relu5', nn.ReLU(inplace=True))# 分类层self.classifier = nn.Linear(num_features, num_classes)# 参数初始化for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):x = self.features(x)x = F.avg_pool2d(x, 7, stride=1).view(x.size(0), -1)x = self.classifier(x)return x
5.构建densenet121
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))densenet121 = DenseNet(init_channel=64,growth_rate=32,block_config=(6,12,24,16),num_classes=len(classeNames)) model = densenet121.to(device)
model
Using cpu device
DenseNet(
(features): Sequential(
(conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu0): ReLU(inplace=True)
(pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(denseblock1): DenseBlock(
(denselayer1): DenseLayer(
(norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): DenseLayer(
(norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): DenseLayer(
(norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): DenseLayer(
(norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): DenseLayer(
(norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): DenseLayer(
(norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition1): Transition(
(norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(denseblock2): DenseBlock(
(denselayer1): DenseLayer(
(norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): DenseLayer(
(norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): DenseLayer(
(norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): DenseLayer(
(norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): DenseLayer(
(norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): DenseLayer(
(norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): DenseLayer(
(norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): DenseLayer(
(norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): DenseLayer(
(norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): DenseLayer(
(norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): DenseLayer(
(norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): DenseLayer(
(norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition2): Transition(
(norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(denseblock3): DenseBlock(
(denselayer1): DenseLayer(
(norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): DenseLayer(
(norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): DenseLayer(
(norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): DenseLayer(
(norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): DenseLayer(
(norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): DenseLayer(
(norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): DenseLayer(
(norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): DenseLayer(
(norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): DenseLayer(
(norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): DenseLayer(
(norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): DenseLayer(
(norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): DenseLayer(
(norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer13): DenseLayer(
(norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer14): DenseLayer(
(norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer15): DenseLayer(
(norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer16): DenseLayer(
(norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer17): DenseLayer(
(norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer18): DenseLayer(
(norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer19): DenseLayer(
(norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer20): DenseLayer(
(norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer21): DenseLayer(
(norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer22): DenseLayer(
(norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer23): DenseLayer(
(norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer24): DenseLayer(
(norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(transition3): Transition(
(norm): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(denseblock4): DenseBlock(
(denselayer1): DenseLayer(
(norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer2): DenseLayer(
(norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer3): DenseLayer(
(norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer4): DenseLayer(
(norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer5): DenseLayer(
(norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer6): DenseLayer(
(norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer7): DenseLayer(
(norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer8): DenseLayer(
(norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer9): DenseLayer(
(norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer10): DenseLayer(
(norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer11): DenseLayer(
(norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer12): DenseLayer(
(norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer13): DenseLayer(
(norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer14): DenseLayer(
(norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer15): DenseLayer(
(norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(denselayer16): DenseLayer(
(norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu1): ReLU(inplace=True)
(conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(norm5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu5): ReLU(inplace=True)
)
(classifier): Linear(in_features=1024, out_features=3, bias=True)
)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------Layer (type) Output Shape Param #
================================================================Conv2d-1 [-1, 64, 112, 112] 9,408BatchNorm2d-2 [-1, 64, 112, 112] 128ReLU-3 [-1, 64, 112, 112] 0MaxPool2d-4 [-1, 64, 56, 56] 0BatchNorm2d-5 [-1, 64, 56, 56] 128ReLU-6 [-1, 64, 56, 56] 0Conv2d-7 [-1, 128, 56, 56] 8,192BatchNorm2d-8 [-1, 128, 56, 56] 256ReLU-9 [-1, 128, 56, 56] 0Conv2d-10 [-1, 32, 56, 56] 36,864BatchNorm2d-11 [-1, 96, 56, 56] 192ReLU-12 [-1, 96, 56, 56] 0Conv2d-13 [-1, 128, 56, 56] 12,288BatchNorm2d-14 [-1, 128, 56, 56] 256ReLU-15 [-1, 128, 56, 56] 0Conv2d-16 [-1, 32, 56, 56] 36,864BatchNorm2d-17 [-1, 128, 56, 56] 256ReLU-18 [-1, 128, 56, 56] 0Conv2d-19 [-1, 128, 56, 56] 16,384BatchNorm2d-20 [-1, 128, 56, 56] 256ReLU-21 [-1, 128, 56, 56] 0Conv2d-22 [-1, 32, 56, 56] 36,864BatchNorm2d-23 [-1, 160, 56, 56] 320ReLU-24 [-1, 160, 56, 56] 0Conv2d-25 [-1, 128, 56, 56] 20,480BatchNorm2d-26 [-1, 128, 56, 56] 256ReLU-27 [-1, 128, 56, 56] 0Conv2d-28 [-1, 32, 56, 56] 36,864BatchNorm2d-29 [-1, 192, 56, 56] 384ReLU-30 [-1, 192, 56, 56] 0Conv2d-31 [-1, 128, 56, 56] 24,576BatchNorm2d-32 [-1, 128, 56, 56] 256ReLU-33 [-1, 128, 56, 56] 0Conv2d-34 [-1, 32, 56, 56] 36,864BatchNorm2d-35 [-1, 224, 56, 56] 448ReLU-36 [-1, 224, 56, 56] 0Conv2d-37 [-1, 128, 56, 56] 28,672BatchNorm2d-38 [-1, 128, 56, 56] 256ReLU-39 [-1, 128, 56, 56] 0Conv2d-40 [-1, 32, 56, 56] 36,864BatchNorm2d-41 [-1, 256, 56, 56] 512ReLU-42 [-1, 256, 56, 56] 0Conv2d-43 [-1, 128, 56, 56] 32,768AvgPool2d-44 [-1, 128, 28, 28] 0BatchNorm2d-45 [-1, 128, 28, 28] 256ReLU-46 [-1, 128, 28, 28] 0Conv2d-47 [-1, 128, 28, 28] 16,384BatchNorm2d-48 [-1, 128, 28, 28] 256ReLU-49 [-1, 128, 28, 28] 0Conv2d-50 [-1, 32, 28, 28] 36,864BatchNorm2d-51 [-1, 160, 28, 28] 320ReLU-52 [-1, 160, 28, 28] 0Conv2d-53 [-1, 128, 28, 28] 20,480BatchNorm2d-54 [-1, 128, 28, 28] 256ReLU-55 [-1, 128, 28, 28] 0Conv2d-56 [-1, 32, 28, 28] 36,864BatchNorm2d-57 [-1, 192, 28, 28] 384ReLU-58 [-1, 192, 28, 28] 0Conv2d-59 [-1, 128, 28, 28] 24,576BatchNorm2d-60 [-1, 128, 28, 28] 256ReLU-61 [-1, 128, 28, 28] 0Conv2d-62 [-1, 32, 28, 28] 36,864BatchNorm2d-63 [-1, 224, 28, 28] 448ReLU-64 [-1, 224, 28, 28] 0Conv2d-65 [-1, 128, 28, 28] 28,672BatchNorm2d-66 [-1, 128, 28, 28] 256ReLU-67 [-1, 128, 28, 28] 0Conv2d-68 [-1, 32, 28, 28] 36,864BatchNorm2d-69 [-1, 256, 28, 28] 512ReLU-70 [-1, 256, 28, 28] 0Conv2d-71 [-1, 128, 28, 28] 32,768BatchNorm2d-72 [-1, 128, 28, 28] 256ReLU-73 [-1, 128, 28, 28] 0Conv2d-74 [-1, 32, 28, 28] 36,864BatchNorm2d-75 [-1, 288, 28, 28] 576ReLU-76 [-1, 288, 28, 28] 0Conv2d-77 [-1, 128, 28, 28] 36,864BatchNorm2d-78 [-1, 128, 28, 28] 256ReLU-79 [-1, 128, 28, 28] 0Conv2d-80 [-1, 32, 28, 28] 36,864BatchNorm2d-81 [-1, 320, 28, 28] 640ReLU-82 [-1, 320, 28, 28] 0Conv2d-83 [-1, 128, 28, 28] 40,960BatchNorm2d-84 [-1, 128, 28, 28] 256ReLU-85 [-1, 128, 28, 28] 0Conv2d-86 [-1, 32, 28, 28] 36,864BatchNorm2d-87 [-1, 352, 28, 28] 704ReLU-88 [-1, 352, 28, 28] 0Conv2d-89 [-1, 128, 28, 28] 45,056BatchNorm2d-90 [-1, 128, 28, 28] 256ReLU-91 [-1, 128, 28, 28] 0Conv2d-92 [-1, 32, 28, 28] 36,864BatchNorm2d-93 [-1, 384, 28, 28] 768ReLU-94 [-1, 384, 28, 28] 0Conv2d-95 [-1, 128, 28, 28] 49,152BatchNorm2d-96 [-1, 128, 28, 28] 256ReLU-97 [-1, 128, 28, 28] 0Conv2d-98 [-1, 32, 28, 28] 36,864BatchNorm2d-99 [-1, 416, 28, 28] 832ReLU-100 [-1, 416, 28, 28] 0Conv2d-101 [-1, 128, 28, 28] 53,248BatchNorm2d-102 [-1, 128, 28, 28] 256ReLU-103 [-1, 128, 28, 28] 0Conv2d-104 [-1, 32, 28, 28] 36,864BatchNorm2d-105 [-1, 448, 28, 28] 896ReLU-106 [-1, 448, 28, 28] 0Conv2d-107 [-1, 128, 28, 28] 57,344BatchNorm2d-108 [-1, 128, 28, 28] 256ReLU-109 [-1, 128, 28, 28] 0Conv2d-110 [-1, 32, 28, 28] 36,864BatchNorm2d-111 [-1, 480, 28, 28] 960ReLU-112 [-1, 480, 28, 28] 0Conv2d-113 [-1, 128, 28, 28] 61,440BatchNorm2d-114 [-1, 128, 28, 28] 256ReLU-115 [-1, 128, 28, 28] 0Conv2d-116 [-1, 32, 28, 28] 36,864BatchNorm2d-117 [-1, 512, 28, 28] 1,024ReLU-118 [-1, 512, 28, 28] 0Conv2d-119 [-1, 256, 28, 28] 131,072AvgPool2d-120 [-1, 256, 14, 14] 0BatchNorm2d-121 [-1, 256, 14, 14] 512ReLU-122 [-1, 256, 14, 14] 0Conv2d-123 [-1, 128, 14, 14] 32,768BatchNorm2d-124 [-1, 128, 14, 14] 256ReLU-125 [-1, 128, 14, 14] 0Conv2d-126 [-1, 32, 14, 14] 36,864BatchNorm2d-127 [-1, 288, 14, 14] 576ReLU-128 [-1, 288, 14, 14] 0Conv2d-129 [-1, 128, 14, 14] 36,864BatchNorm2d-130 [-1, 128, 14, 14] 256ReLU-131 [-1, 128, 14, 14] 0Conv2d-132 [-1, 32, 14, 14] 36,864BatchNorm2d-133 [-1, 320, 14, 14] 640ReLU-134 [-1, 320, 14, 14] 0Conv2d-135 [-1, 128, 14, 14] 40,960BatchNorm2d-136 [-1, 128, 14, 14] 256ReLU-137 [-1, 128, 14, 14] 0Conv2d-138 [-1, 32, 14, 14] 36,864BatchNorm2d-139 [-1, 352, 14, 14] 704ReLU-140 [-1, 352, 14, 14] 0Conv2d-141 [-1, 128, 14, 14] 45,056BatchNorm2d-142 [-1, 128, 14, 14] 256ReLU-143 [-1, 128, 14, 14] 0Conv2d-144 [-1, 32, 14, 14] 36,864BatchNorm2d-145 [-1, 384, 14, 14] 768ReLU-146 [-1, 384, 14, 14] 0Conv2d-147 [-1, 128, 14, 14] 49,152BatchNorm2d-148 [-1, 128, 14, 14] 256ReLU-149 [-1, 128, 14, 14] 0Conv2d-150 [-1, 32, 14, 14] 36,864BatchNorm2d-151 [-1, 416, 14, 14] 832ReLU-152 [-1, 416, 14, 14] 0Conv2d-153 [-1, 128, 14, 14] 53,248BatchNorm2d-154 [-1, 128, 14, 14] 256ReLU-155 [-1, 128, 14, 14] 0Conv2d-156 [-1, 32, 14, 14] 36,864BatchNorm2d-157 [-1, 448, 14, 14] 896ReLU-158 [-1, 448, 14, 14] 0Conv2d-159 [-1, 128, 14, 14] 57,344BatchNorm2d-160 [-1, 128, 14, 14] 256ReLU-161 [-1, 128, 14, 14] 0Conv2d-162 [-1, 32, 14, 14] 36,864BatchNorm2d-163 [-1, 480, 14, 14] 960ReLU-164 [-1, 480, 14, 14] 0Conv2d-165 [-1, 128, 14, 14] 61,440BatchNorm2d-166 [-1, 128, 14, 14] 256ReLU-167 [-1, 128, 14, 14] 0Conv2d-168 [-1, 32, 14, 14] 36,864BatchNorm2d-169 [-1, 512, 14, 14] 1,024ReLU-170 [-1, 512, 14, 14] 0Conv2d-171 [-1, 128, 14, 14] 65,536BatchNorm2d-172 [-1, 128, 14, 14] 256ReLU-173 [-1, 128, 14, 14] 0Conv2d-174 [-1, 32, 14, 14] 36,864BatchNorm2d-175 [-1, 544, 14, 14] 1,088ReLU-176 [-1, 544, 14, 14] 0Conv2d-177 [-1, 128, 14, 14] 69,632BatchNorm2d-178 [-1, 128, 14, 14] 256ReLU-179 [-1, 128, 14, 14] 0Conv2d-180 [-1, 32, 14, 14] 36,864BatchNorm2d-181 [-1, 576, 14, 14] 1,152ReLU-182 [-1, 576, 14, 14] 0Conv2d-183 [-1, 128, 14, 14] 73,728BatchNorm2d-184 [-1, 128, 14, 14] 256ReLU-185 [-1, 128, 14, 14] 0Conv2d-186 [-1, 32, 14, 14] 36,864BatchNorm2d-187 [-1, 608, 14, 14] 1,216ReLU-188 [-1, 608, 14, 14] 0Conv2d-189 [-1, 128, 14, 14] 77,824BatchNorm2d-190 [-1, 128, 14, 14] 256ReLU-191 [-1, 128, 14, 14] 0Conv2d-192 [-1, 32, 14, 14] 36,864BatchNorm2d-193 [-1, 640, 14, 14] 1,280ReLU-194 [-1, 640, 14, 14] 0Conv2d-195 [-1, 128, 14, 14] 81,920BatchNorm2d-196 [-1, 128, 14, 14] 256ReLU-197 [-1, 128, 14, 14] 0Conv2d-198 [-1, 32, 14, 14] 36,864BatchNorm2d-199 [-1, 672, 14, 14] 1,344ReLU-200 [-1, 672, 14, 14] 0Conv2d-201 [-1, 128, 14, 14] 86,016BatchNorm2d-202 [-1, 128, 14, 14] 256ReLU-203 [-1, 128, 14, 14] 0Conv2d-204 [-1, 32, 14, 14] 36,864BatchNorm2d-205 [-1, 704, 14, 14] 1,408ReLU-206 [-1, 704, 14, 14] 0Conv2d-207 [-1, 128, 14, 14] 90,112BatchNorm2d-208 [-1, 128, 14, 14] 256ReLU-209 [-1, 128, 14, 14] 0Conv2d-210 [-1, 32, 14, 14] 36,864BatchNorm2d-211 [-1, 736, 14, 14] 1,472ReLU-212 [-1, 736, 14, 14] 0Conv2d-213 [-1, 128, 14, 14] 94,208BatchNorm2d-214 [-1, 128, 14, 14] 256ReLU-215 [-1, 128, 14, 14] 0Conv2d-216 [-1, 32, 14, 14] 36,864BatchNorm2d-217 [-1, 768, 14, 14] 1,536ReLU-218 [-1, 768, 14, 14] 0Conv2d-219 [-1, 128, 14, 14] 98,304BatchNorm2d-220 [-1, 128, 14, 14] 256ReLU-221 [-1, 128, 14, 14] 0Conv2d-222 [-1, 32, 14, 14] 36,864BatchNorm2d-223 [-1, 800, 14, 14] 1,600ReLU-224 [-1, 800, 14, 14] 0Conv2d-225 [-1, 128, 14, 14] 102,400BatchNorm2d-226 [-1, 128, 14, 14] 256ReLU-227 [-1, 128, 14, 14] 0Conv2d-228 [-1, 32, 14, 14] 36,864BatchNorm2d-229 [-1, 832, 14, 14] 1,664ReLU-230 [-1, 832, 14, 14] 0Conv2d-231 [-1, 128, 14, 14] 106,496BatchNorm2d-232 [-1, 128, 14, 14] 256ReLU-233 [-1, 128, 14, 14] 0Conv2d-234 [-1, 32, 14, 14] 36,864BatchNorm2d-235 [-1, 864, 14, 14] 1,728ReLU-236 [-1, 864, 14, 14] 0Conv2d-237 [-1, 128, 14, 14] 110,592BatchNorm2d-238 [-1, 128, 14, 14] 256ReLU-239 [-1, 128, 14, 14] 0Conv2d-240 [-1, 32, 14, 14] 36,864BatchNorm2d-241 [-1, 896, 14, 14] 1,792ReLU-242 [-1, 896, 14, 14] 0Conv2d-243 [-1, 128, 14, 14] 114,688BatchNorm2d-244 [-1, 128, 14, 14] 256ReLU-245 [-1, 128, 14, 14] 0Conv2d-246 [-1, 32, 14, 14] 36,864BatchNorm2d-247 [-1, 928, 14, 14] 1,856ReLU-248 [-1, 928, 14, 14] 0Conv2d-249 [-1, 128, 14, 14] 118,784BatchNorm2d-250 [-1, 128, 14, 14] 256ReLU-251 [-1, 128, 14, 14] 0Conv2d-252 [-1, 32, 14, 14] 36,864BatchNorm2d-253 [-1, 960, 14, 14] 1,920ReLU-254 [-1, 960, 14, 14] 0Conv2d-255 [-1, 128, 14, 14] 122,880BatchNorm2d-256 [-1, 128, 14, 14] 256ReLU-257 [-1, 128, 14, 14] 0Conv2d-258 [-1, 32, 14, 14] 36,864BatchNorm2d-259 [-1, 992, 14, 14] 1,984ReLU-260 [-1, 992, 14, 14] 0Conv2d-261 [-1, 128, 14, 14] 126,976BatchNorm2d-262 [-1, 128, 14, 14] 256ReLU-263 [-1, 128, 14, 14] 0Conv2d-264 [-1, 32, 14, 14] 36,864BatchNorm2d-265 [-1, 1024, 14, 14] 2,048ReLU-266 [-1, 1024, 14, 14] 0Conv2d-267 [-1, 512, 14, 14] 524,288AvgPool2d-268 [-1, 512, 7, 7] 0BatchNorm2d-269 [-1, 512, 7, 7] 1,024ReLU-270 [-1, 512, 7, 7] 0Conv2d-271 [-1, 128, 7, 7] 65,536BatchNorm2d-272 [-1, 128, 7, 7] 256ReLU-273 [-1, 128, 7, 7] 0Conv2d-274 [-1, 32, 7, 7] 36,864BatchNorm2d-275 [-1, 544, 7, 7] 1,088ReLU-276 [-1, 544, 7, 7] 0Conv2d-277 [-1, 128, 7, 7] 69,632BatchNorm2d-278 [-1, 128, 7, 7] 256ReLU-279 [-1, 128, 7, 7] 0Conv2d-280 [-1, 32, 7, 7] 36,864BatchNorm2d-281 [-1, 576, 7, 7] 1,152ReLU-282 [-1, 576, 7, 7] 0Conv2d-283 [-1, 128, 7, 7] 73,728BatchNorm2d-284 [-1, 128, 7, 7] 256ReLU-285 [-1, 128, 7, 7] 0Conv2d-286 [-1, 32, 7, 7] 36,864BatchNorm2d-287 [-1, 608, 7, 7] 1,216ReLU-288 [-1, 608, 7, 7] 0Conv2d-289 [-1, 128, 7, 7] 77,824BatchNorm2d-290 [-1, 128, 7, 7] 256ReLU-291 [-1, 128, 7, 7] 0Conv2d-292 [-1, 32, 7, 7] 36,864BatchNorm2d-293 [-1, 640, 7, 7] 1,280ReLU-294 [-1, 640, 7, 7] 0Conv2d-295 [-1, 128, 7, 7] 81,920BatchNorm2d-296 [-1, 128, 7, 7] 256ReLU-297 [-1, 128, 7, 7] 0Conv2d-298 [-1, 32, 7, 7] 36,864BatchNorm2d-299 [-1, 672, 7, 7] 1,344ReLU-300 [-1, 672, 7, 7] 0Conv2d-301 [-1, 128, 7, 7] 86,016BatchNorm2d-302 [-1, 128, 7, 7] 256ReLU-303 [-1, 128, 7, 7] 0Conv2d-304 [-1, 32, 7, 7] 36,864BatchNorm2d-305 [-1, 704, 7, 7] 1,408ReLU-306 [-1, 704, 7, 7] 0Conv2d-307 [-1, 128, 7, 7] 90,112BatchNorm2d-308 [-1, 128, 7, 7] 256ReLU-309 [-1, 128, 7, 7] 0Conv2d-310 [-1, 32, 7, 7] 36,864BatchNorm2d-311 [-1, 736, 7, 7] 1,472ReLU-312 [-1, 736, 7, 7] 0Conv2d-313 [-1, 128, 7, 7] 94,208BatchNorm2d-314 [-1, 128, 7, 7] 256ReLU-315 [-1, 128, 7, 7] 0Conv2d-316 [-1, 32, 7, 7] 36,864BatchNorm2d-317 [-1, 768, 7, 7] 1,536ReLU-318 [-1, 768, 7, 7] 0Conv2d-319 [-1, 128, 7, 7] 98,304BatchNorm2d-320 [-1, 128, 7, 7] 256ReLU-321 [-1, 128, 7, 7] 0Conv2d-322 [-1, 32, 7, 7] 36,864BatchNorm2d-323 [-1, 800, 7, 7] 1,600ReLU-324 [-1, 800, 7, 7] 0Conv2d-325 [-1, 128, 7, 7] 102,400BatchNorm2d-326 [-1, 128, 7, 7] 256ReLU-327 [-1, 128, 7, 7] 0Conv2d-328 [-1, 32, 7, 7] 36,864BatchNorm2d-329 [-1, 832, 7, 7] 1,664ReLU-330 [-1, 832, 7, 7] 0Conv2d-331 [-1, 128, 7, 7] 106,496BatchNorm2d-332 [-1, 128, 7, 7] 256ReLU-333 [-1, 128, 7, 7] 0Conv2d-334 [-1, 32, 7, 7] 36,864BatchNorm2d-335 [-1, 864, 7, 7] 1,728ReLU-336 [-1, 864, 7, 7] 0Conv2d-337 [-1, 128, 7, 7] 110,592BatchNorm2d-338 [-1, 128, 7, 7] 256ReLU-339 [-1, 128, 7, 7] 0Conv2d-340 [-1, 32, 7, 7] 36,864BatchNorm2d-341 [-1, 896, 7, 7] 1,792ReLU-342 [-1, 896, 7, 7] 0Conv2d-343 [-1, 128, 7, 7] 114,688BatchNorm2d-344 [-1, 128, 7, 7] 256ReLU-345 [-1, 128, 7, 7] 0Conv2d-346 [-1, 32, 7, 7] 36,864BatchNorm2d-347 [-1, 928, 7, 7] 1,856ReLU-348 [-1, 928, 7, 7] 0Conv2d-349 [-1, 128, 7, 7] 118,784BatchNorm2d-350 [-1, 128, 7, 7] 256ReLU-351 [-1, 128, 7, 7] 0Conv2d-352 [-1, 32, 7, 7] 36,864BatchNorm2d-353 [-1, 960, 7, 7] 1,920ReLU-354 [-1, 960, 7, 7] 0Conv2d-355 [-1, 128, 7, 7] 122,880BatchNorm2d-356 [-1, 128, 7, 7] 256ReLU-357 [-1, 128, 7, 7] 0Conv2d-358 [-1, 32, 7, 7] 36,864BatchNorm2d-359 [-1, 992, 7, 7] 1,984ReLU-360 [-1, 992, 7, 7] 0Conv2d-361 [-1, 128, 7, 7] 126,976BatchNorm2d-362 [-1, 128, 7, 7] 256ReLU-363 [-1, 128, 7, 7] 0Conv2d-364 [-1, 32, 7, 7] 36,864BatchNorm2d-365 [-1, 1024, 7, 7] 2,048ReLU-366 [-1, 1024, 7, 7] 0Linear-367 [-1, 3] 3,075
================================================================
Total params: 6,956,931
Trainable params: 6,956,931
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 294.57
Params size (MB): 26.54
Estimated Total Size (MB): 321.69
----------------------------------------------------------------
四、训练模型
1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X) # 网络输出loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad() # grad属性归零loss.backward() # 反向传播optimizer.step() # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
2.编写测试函数
def test (dataloader, model, loss_fn):size = len(dataloader.dataset) # 测试集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss
3.正式训练
import copyoptimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数epochs = 20train_loss = []
train_acc = []
test_loss = []
test_acc = []best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)print('Done')
五、结果可视化
1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2.模型评估
# 将参数加载到model当中
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
总结:
本周主要通过实际例子完整学习了DenseNet算法,更加深入地了接到了DenseNet的结构。
相关文章:
第J3-1周:DenseNet算法 实现乳腺癌识别
文章目录 一、前言二、前期准备1.设置GPU2.划分数据集 三、搭建网络模型1.DenseLayer模块2.DenseBlock模块3.Transition模块4.构建DenseNet5.构建densenet121 四、训练模型1.编写训练函数2.编写测试函数3.正式训练 五、结果可视化1.Loss与Accuracy图2.模型评估 总结:…...
Mac 版 本地部署deepseek ➕ RAGflow 知识库搭建流程分享(附问题解决方法)
安装: 1、首先按照此视频的流程一步一步进行安装:(macos版)ragflowdeepseek 私域知识库搭建流程分享_哔哩哔哩_bilibili 2、RAGflow 官网文档指南:https://ragflow.io 3、RAGflow 下载地址:https://github.com/infi…...
【解决】OnTriggerEnter/OnTriggerExit 调用匿名委托误区的问题
开发平台:Unity 开发语言:CSharp 6.0 开发工具:Visual Studio 2022 问题背景 public void OnTriggerEnter(Collider collider) {output.OnInteractionNoticed () > OnInteractionTriggered?.Invoke(); }public void OnTriggerExit(C…...
vscode集成DeepSeek
vscode 扩展 安装 Cline Meet Cline,一个可以使用你的CLI和编辑器的AI助手。 得益于 Claude 3.5 Sonnet的代理编码功能,Cline 可以逐步处理复杂的软件开发任务。借助让他创建和编辑文件、探索大型项目、使用浏览器和执行终端命令(在您授予权限后)的工具&…...
MapReduce编程模型
MapReduce编程模型 理解MapReduce编程模型独立完成一个MapReduce程序并运行成功了解MapReduce工程流程掌握并描述出shuffle全过程(面试)独立编写课堂及作业中的MR程序理解并解决数据倾斜 1. MapReduce编程模型 Hadoop架构图 Hadoop由HDFS分布式存储、M…...
SQL server2022的详细安装流程以及简单使用
鉴于SQL Server2008R2版本过于老旧,本文主要讲述如何安装SQL Server 2022。 本文主要详细介绍SQL server2022的详细安装流程以及简单使用,以《数据库系统概论(第5版)》的第79页—第80页为例,详细介绍如何使用SQL serv…...
Linux的诞生:一场自由与协作的技术革命
Linux的诞生:一场自由与协作的技术革命 在今天的互联网世界,Linux几乎无处不在——从智能手机(Android内核)到超级计算机,从云计算平台到家用路由器,它的身影渗透在技术的各个角落。但这样一个改变世界的操…...
Pytorch为什么 nn.CrossEntropyLoss = LogSoftmax + nn.NLLLoss?
为什么 nn.CrossEntropyLoss LogSoftmax nn.NLLLoss? 在使用 PyTorch 时,我们经常听说 nn.CrossEntropyLoss 是 LogSoftmax 和 nn.NLLLoss 的组合。这句话听起来简单,但背后到底是怎么回事?为什么这两个分开的功能加起来就等于…...
Go入门之文件
以只读方式打开文件 package mainimport ("fmt""io""os" )func main() {file, err : os.Open("./main.go")defer file.Close()if err ! nil {fmt.Println(err)return}fmt.Println(file)var tempSlice make([]byte, 128)var strSlice…...
基因型—环境两向表数据分析——品种生态区划分
参考资料:农作物品种试验数据管理与分析 用于品种生态区划分的GGE双标图有两种功能图:试点向量功能图和“谁赢在哪里”功能图。双标图的具体模型基于SD定标和h加权和试点中心化的数据。本例中籽粒产量的GGE双标图仅解释了G和GE总变异的53.6%,…...
Leetcode2414:最长的字母序连续子字符串的长度
题目描述: 字母序连续字符串 是由字母表中连续字母组成的字符串。换句话说,字符串 "abcdefghijklmnopqrstuvwxyz" 的任意子字符串都是 字母序连续字符串 。 例如,"abc" 是一个字母序连续字符串,而 "ac…...
React(12)案例前期准备
1、创建项目 npx creat-react-app xxx 这里注意 react版本过高会导致antd组件无法安装 需要手动修改pagejson文件中的react和react-demo版本号为 18.2.0 npm i 在配置别名路径 创建craco文件 const path require("path"); module.exports {webpack: {alias: …...
2025年2月28日(RAG)
从图片中的内容来看,用户提到的“RAG”实际上是“Retrieval-Augmented Generation”的缩写,中文称为“检索增强生成”。这是一种结合了检索(Retrieval)和生成(Generation)的技术,用于增强自然语…...
python-leetcode-寻找重复数
287. 寻找重复数 - 力扣(LeetCode) class Solution:def findDuplicate(self, nums: List[int]) -> int:# Step 1: 找到环的相遇点slow nums[0]fast nums[0]# 使用快慢指针,直到相遇while True:slow nums[slow] # 慢指针走一步fast nu…...
Vue 3 中,如果 public 目录下的 .js 文件中有一个函数执行后生成数据,并希望将这些数据传递到组件中
在 Vue 3 中,如果 public 目录下的 .js 文件中有一个函数执行后生成数据,并希望将这些数据传递到组件中,可以使用 window.postMessage,但需要结合具体场景。以下是不同方法的详细说明: 方法 1:使用 window…...
ai大模型自动化测试-TensorFlow Testing 测试模型实例
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍: 测试流程 测试计划制定 确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准…...
初阶MySQL(两万字全面解析)
文章目录 1.初识MySQL1.1数据库1.2查看数据库1.3创建数据库1.4字符集编码和排序规则1.5修改数据库1.6删除数据库 2.MySQL常用数据类型和表的操作2.(一)常用数据类型1.数值类2.字符串类型3.二进制类型4.日期类型 2.(二)表的操作1查看指定库中所有表2.创建表 3.查看表结构和查看表…...
数据库数据恢复—SQL Server附加数据库报错“错误 823”怎么办?
SQL Server数据库附加数据库过程中比较常见的报错是“错误 823”,附加数据库失败。 如果数据库有备份则只需还原备份即可。但是如果没有备份,备份时间太久,或者其他原因导致备份不可用,那么就需要通过专业手段对数据库进行数据恢复…...
SpringBatch简单处理多表批量动态更新
项目需要处理一堆表,这些表数据量不是很大都有经纬度信息,但是这些表的数据没有流域信息,需要按经纬度信息计算所属流域信息。比较简单的项目,按DeepSeek提示思索完成开发,AI真好用。 阿里AI个人版本IDEA安装 IDEA中使…...
夜莺监控 - 边缘告警引擎架构详解
前言 夜莺类似 Grafana 可以接入多个数据源,查询数据源的数据做告警和展示。但是有些数据源所在的机房和中心机房之间网络链路不好,如果由 n9e 进程去周期性查询数据并判定告警,那在网络链路抖动或拥塞的时候,告警就不稳定了。所…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
STL 2迭代器
文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器? 1.迭代器…...
