当前位置: 首页 > news >正文

redis repl_backlog_first_byte_offset 这个字段的作用

repl_backlog_first_byte_offset` 是 Redis 复制积压缓冲区(Replication Backlog)中的一个关键字段,其作用是 标识积压缓冲区中第一个字节对应的全局复制偏移量


通俗解释

当主从节点断开重连时,Redis 需要通过复制积压缓冲区(一个环形内存区域)快速恢复增量数据同步。
repl_backlog_first_byte_offset 的值表示:
当前积压缓冲区中存储的最旧数据的起始偏移量(即缓冲区的起始位置对应的全局复制偏移量)。


具体作用

  1. 判断增量同步的可行性
    从节点重连主节点时,会将自己的 slave_repl_offset(已复制的偏移量)与主节点的 repl_backlog_first_byte_offset 对比:

    • 如果 slave_repl_offset >= repl_backlog_first_byte_offset
      说明从节点需要的增量数据仍在积压缓冲区中,可以直接进行增量同步(部分同步)。
    • 如果 slave_repl_offset < repl_backlog_first_byte_offset
      说明积压缓冲区已覆盖了从节点需要的数据,必须触发全量同步(完全同步)。
  2. 管理环形缓冲区的覆盖机制
    积压缓冲区是环形的(类似一个循环队列),当写入数据超过缓冲区容量时,旧数据会被覆盖。
    每次覆盖发生时,repl_backlog_first_byte_offset 会向前推进(即增加),表示缓冲区的新起点。


示例

假设主节点有以下配置:

  • repl_backlog_size: 1048576(缓冲区容量为 1MB)
  • repl_backlog_first_byte_offset: 1(缓冲区起始偏移量为 1)
  • master_repl_offset: 979768(主节点当前最新偏移量)

此时,缓冲区存储了从 1979768 的复制数据(总长度 repl_backlog_histlen=979768)。

如果主节点继续写入数据,当 master_repl_offset 超过 1 + 1048576 = 1048577 时,缓冲区会被覆盖,repl_backlog_first_byte_offset 会更新为新的起点(例如 2)。


相关字段对比

字段作用
repl_backlog_first_byte_offset积压缓冲区中第一个字节的全局偏移量(起始点)。
master_repl_offset主节点当前最新的全局偏移量(数据写入进度)。
repl_backlog_histlen积压缓冲区中实际存储的数据长度(从 first_byte_offsetmaster_repl_offset)。

实际意义

  • 优化网络恢复:通过维护积压缓冲区,避免短时间断连后触发全量同步。
  • 配置建议:合理设置 repl-backlog-size(通过 redis.conf 配置),确保缓冲区能覆盖可能的断连时间窗口。

相关文章:

redis repl_backlog_first_byte_offset 这个字段的作用

repl_backlog_first_byte_offset 是 Redis 复制积压缓冲区&#xff08;Replication Backlog&#xff09;中的一个关键字段&#xff0c;其作用是 标识积压缓冲区中第一个字节对应的全局复制偏移量。 通俗解释 当主从节点断开重连时&#xff0c;Redis 需要通过复制积压缓冲区&am…...

JavaScript基础(BOM对象、DOM节点、表单)

BOM对象 浏览器介绍 BOM&#xff1a;浏览器对象模型 IEChromeSafariFireFox 三方 QQ浏览器360浏览器 window对象 window代表浏览器窗口 window.innerHeight 734 window.innerWidth 71 window.outerHeight 823 window.outerWidth 782 Navigator对象&#xff08;不常用&am…...

Java Junit框架

JUnit 是一个广泛使用的 Java 单元测试框架&#xff0c;用于编写和运行可重复的测试。它是 xUnit 家族的一部分&#xff0c;专门为 Java 语言设计。JUnit 的主要目标是帮助开发者编写可维护的测试代码&#xff0c;确保代码的正确性和稳定性。 JUnit 的主要特点 注解驱动&…...

23种设计模式之《备忘录模式(Memento)》在c#中的应用及理解

程序设计中的主要设计模式通常分为三大类&#xff0c;共23种&#xff1a; 1. 创建型模式&#xff08;Creational Patterns&#xff09; 单例模式&#xff08;Singleton&#xff09;&#xff1a;确保一个类只有一个实例&#xff0c;并提供全局访问点。 工厂方法模式&#xff0…...

Seaborn知识总结

1、简介 &#xff08;1&#xff09;高级接口&#xff1a;Seaborn 提供了一组高级函数和方法&#xff0c;可以使得创建常见的统计图表变得简单&#xff0c;例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码&#xff1b; …...

flowable中用户相关api

springboot引入flowable&#xff1a;高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类

&#xff08;以下内容全部来自上述课程&#xff09; 1.抽象类 父类定义抽象方法后&#xff0c;子类的方法就必须重写&#xff0c;抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为&#xff08;方法&#xff09;抽取到父类之后。由于每一个子类执行的内容是不一样…...

安装 Open WebUI

2025.03.01 早上 我已经安装了ollama 和deeseek模型 &#xff08;本地部署流水账之ollama安装Deepseek安装-CSDN博客&#xff09;&#xff0c;然后需要个与模型沟通的工具&#xff08;这么说不知道对不对&#xff09;。 刚开始用的chatbox&#xff0c;安装很方便&#xff0c;…...

Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度?

Llama 2中的Margin Loss&#xff1a;为何更高的Margin导致更大的Loss和梯度&#xff1f; 在《Llama 2: Open Foundation and Fine-Tuned Chat Models》论文中&#xff0c;作者在强化学习与人类反馈&#xff08;RLHF&#xff09;的Reward Model训练中引入了Margin Loss的概念&a…...

【后端】Docker一本通

长期更新补充&#xff0c;建议关注收藏点赞 目录 Docker概述安装部署Docker基本操作使用docker部署tomcat使用docker部署mysql Docker概述 docker是⼀个应⽤级隔离的虚拟化技术docker三大核心概念 镜像&#xff1a;是具有源的所有特征的⼀个标记⽂件 仓库&#xff1a;存放镜像…...

工程化与框架系列(13)--虚拟DOM实现

虚拟DOM实现 &#x1f333; 虚拟DOM&#xff08;Virtual DOM&#xff09;是现代前端框架的核心技术之一&#xff0c;它通过在内存中维护UI的虚拟表示来提高渲染性能。本文将深入探讨虚拟DOM的实现原理和关键技术。 虚拟DOM概述 &#x1f31f; &#x1f4a1; 小知识&#xff1…...

数据结构之各类排序算法代码及其详解

1. 排序的概念 排序是一种常见的算法概念&#xff0c;用于将一组数据按照特定的顺序进行排列。排序算法的目的是将一组数据按照递增或递减的顺序重新排列。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。排序算法的选择通常取决于数据规模、数据分布…...

【洛谷贪心算法】P1090合并果子

为了使消耗的体力最小&#xff0c;每次都应该选择当前重量最小的两堆果子进行合并。可以使用优先队列&#xff08;小根堆&#xff09;来实现这个过程&#xff0c;优先队列可以自动维护元素的顺序&#xff0c;每次取出堆顶的两个元素&#xff08;即最小的两个元素&#xff09;进…...

【告别双日期面板!一招实现el-date-picker智能联动日期选择】

告别双日期面板&#xff01;一招实现el-date-picker智能联动日期选择 1.需求背景2.DateTimePicker 现状图3.日期选择器实现代码4.日期选择器实现效果图5.日期时间选择器实现代码6.日期时间选择器实现效果图 1.需求背景 在用户使用时间查询时&#xff0c;我们经常需要按月份筛选…...

现今大语言模型性能(准确率)比较

现今大语言模型性能(准确率)比较 表头信息:表的标题为“大语言模型性能比较结果”(英文:Table 1: Large Language Model Performance Comparison Results),表明该表是用于对比不同大语言模型的性能。列信息: 模型:列出参与比较的不同大语言模型名称,包括LLAMA3(70B)…...

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图(水文,勿三)

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 这一节我们来学习指针的相关知识&#xff0c;学习内存和地址&#xff0c;指针变量和地址&#xff0c;包…...

在 UniApp 中实现中间凸起 TabBar 的完整指南

如何在 UniApp 中设置中间 TabBar 凸起效果 在移动应用开发中&#xff0c;TabBar 是常见的导航组件&#xff0c;而中间凸起的 TabBar 按钮则是一种流行的设计风格&#xff0c;常用于突出重要功能&#xff08;如发布、拍照等&#xff09;。UniApp 提供了 midButton 属性&#x…...

Redis大key

Redis大key基本概念&#xff0c;影响 Redis 大 key 指在 Redis 中存储了大量数据的键&#xff0c;它会对 Redis 的性能和内存管理产生影响。 大key的定义与value的大小和元素数量有关&#xff0c;但这个定义并不是绝对的&#xff0c;而是相对的&#xff0c;具体取决于系统的使用…...

WPF高级 | WPF 与数据库交互:连接、查询与数据更新

WPF高级 | WPF 与数据库交互&#xff1a;连接、查询与数据更新 前言一、数据库交互基础概念1.1 数据库简介1.2 数据访问技术 二、WPF 与数据库连接2.1 连接字符串2.2 建立连接 三、WPF 中的数据查询3.1 使用ADO.NET进行数据查询3.2 使用 Entity Framework 进行数据查询3.3 使用…...

CogBlobTool工具

CogBlobTool是一款专用于图像斑点检测于分析的 工具&#xff0c;通过灰度值阈值分割和特征过滤&#xff0c;帮助在复杂背景中提取目标区域&#xff0c;并计算几何属性。 效果图 注意&#xff1a;在这里只有一张图像可以不使用模板匹配工具 CogBlobTool工具的功能 斑点检测于…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...