大模型微调入门(Transformers + Pytorch)
目标
输入:你是谁?
输出:我们预训练的名字。
训练
为了性能好下载小参数模型,普通机器都能运行。
下载模型
# 方式1:使用魔搭社区SDK 下载
# down_deepseek.py
from modelscope import snapshot_download
model_dir = snapshot_download('deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B')# 方式2:git lfs
# 需要提前安装git大文件存储 git-lfs
# 在线查看 https://www.modelscope.cn/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
git lfs install
git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.git
训练模型
# finetune_deepseek.py
from datasets import Dataset
from transformers import (AutoModelForCausalLM,AutoTokenizer,TrainingArguments,Trainer,DataCollatorForLanguageModeling
)# 加载模型和分词器
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)# 准备训练数据
train_data = [{"question": "你是谁?","answer": "我是黄登峰。"},{"question": "你的名字是什么?","answer": "黄登峰"},{"question": "你是做什么的?","answer": "我是深圳一家公司打工的牛马程序员。"},# 在这里添加更多的问答对
]test_data = [{"question": "你的名字是什么?","answer": "我的名字是黄登峰。"}
]
def format_instruction(example):"""格式化输入输出对"""return f"Human: {example['question']}\n\nAssistant: {example['answer']}"# 转换数据格式
train_formatted_data = [{"text": format_instruction(item)} for item in train_data]
test_formatted_data = [{"text": format_instruction(item)} for item in test_data]
train_dataset = Dataset.from_list(train_formatted_data)
test_dataset = Dataset.from_list(test_formatted_data)# 数据预处理函数
def preprocess_function(examples):return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)# 对数据集进行预处理
train_tokenized_dataset = train_dataset.map(preprocess_function,batched=True,remove_columns=train_dataset.column_names
)test_tokenized_dataset = test_dataset.map(preprocess_function,batched=True,remove_columns=test_dataset.column_names
)
output_dir = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"# 训练参数设置
training_args = TrainingArguments(output_dir=output_dir,num_train_epochs=3,per_device_train_batch_size=4,save_steps=100,save_total_limit=2,learning_rate=2e-5,weight_decay=0.01,logging_dir="./logs",logging_steps=10,
)# 创建训练器
trainer = Trainer(model=model,args=training_args,train_dataset=train_tokenized_dataset,eval_dataset=test_tokenized_dataset,data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)# 开始训练
trainer.train()# 保存模型
trainer.save_model()
# 保存tokenizer
tokenizer.save_pretrained(output_dir)
模型格式
训练后的模型输出格式是Hugging Face格式,vllm 可以直接使用,ollama,llama.cpp默认是GGUF格式。
# 需要用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换
git clone https://github.com/ggerganov/llama.cpp.git
pip install -r llama.cpp/requirements.txt
# 如果不量化,保留模型的效果
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B --outtype f16 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf
# 如果需要量化(加速并有损效果),直接执行下面脚本就可以
python llama.cpp/convert_hf_to_gguf.py ./DeepSeek-R1-Distill-Qwen-1.5B --outtype q8_0 --verbose --outfile DeepSeek-R1-Distill-Qwen-1.5B.gguf
验证
# test_model.py
from transformers import AutoModelForCausalLM, AutoTokenizer
import torchdef generate_response(prompt, model, tokenizer, max_length=512):# 将输入格式化为训练时的格式formatted_prompt = f"Human: {prompt}\n\nAssistant:"# 对输入进行编码inputs = tokenizer(formatted_prompt, return_tensors="pt", padding=True, truncation=True)# 生成回答with torch.no_grad():outputs = model.generate(inputs.input_ids,max_length=max_length,num_return_sequences=1,temperature=0.7,do_sample=True,pad_token_id=tokenizer.pad_token_id,eos_token_id=tokenizer.eos_token_id,)# 解码输出response = tokenizer.decode(outputs[0], skip_special_tokens=True)# 提取Assistant的回答部分response = response.split("Assistant:")[-1].strip()return responsedef main():# 加载微调后的模型和分词器model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B_CUSTOM"tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)# 准备测试问题test_questions = ["你是谁?","你的名字是什么?","你是做什么的?",]# 测试模型回答print("开始测试模型回答:")print("-" * 50)for question in test_questions:print(f"问题: {question}")response = generate_response(question, model, tokenizer)print(f"回答: {response}")print("-" * 50)if __name__ == "__main__":main()
相关文章:
大模型微调入门(Transformers + Pytorch)
目标 输入:你是谁? 输出:我们预训练的名字。 训练 为了性能好下载小参数模型,普通机器都能运行。 下载模型 # 方式1:使用魔搭社区SDK 下载 # down_deepseek.py from modelscope import snapshot_download model_…...
【开源免费】基于SpringBoot+Vue.JS网络海鲜市场系统(JAVA毕业设计)
本文项目编号 T 222 ,文末自助获取源码 \color{red}{T222,文末自助获取源码} T222,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
在线会议时, 笔记本电脑的麦克风收音效果差是为什么
背景 最近在线面试. 使用腾讯会议或者飞书, 戴耳机参加在线面试, 遇到好几个面试官说我的音质不好. 一直没在意, 后来反思, 应该是电脑哪里出了问题. 排查 先买了一副品牌有线耳机, 测试后本地录制的声音仍然品质很差去掉耳机延长线后, 麦克风品质仍然很差最终找到答案, 原…...
理解文件系统
目录 文件系统 内存文件与磁盘文件的区别 初识inode 磁盘的概念 磁盘分区与格式化介绍 EXT2文件系统的存储方案 软硬链接 软连接 编辑 硬链接 软硬链接的区别 文件的三个时间 文件系统 内存文件与磁盘文件的区别 我们知道文件可以分为磁盘文件和内存文件&#…...
第二十四:5.2【搭建 pinia 环境】axios 异步调用数据
第一步安装:npm install pinia 第二步:操作src/main.ts 改变里面的值的信息: <div class"count"><h2>当前求和为:{{ sum }}</h2><select v-model.number"n"> // .number 这里是…...
Vue2+Element实现Excel文件上传下载预览【超详细图解】
目录 一、需求背景 二、落地实现 1.文件上传 图片示例 HTML代码 业务代码 2.文件下载 图片示例 方式一:代码 方式二:代码 3.文件预览 图片示例 方式一:代码 方式二:代码 一、需求背景 在一个愉快的年后ÿ…...
C# 装箱(Boxing)与拆箱(Unboxing)
C# 装箱(Boxing)与拆箱(Unboxing) 在 C# 中,装箱和拆箱是与值类型(如结构体)和引用类型(如类)之间的转换相关的操作。它们是类型系统的一部分,但如果不正确使…...
【AD】3-10 原理图PDF导出
文件—智能PDF 多页原理图导出 导出设置时选择工程,可自行选择导出一页或多页原理图,一般PCB不用导出...
SQL命令详解之增删改数据
目录 简介 1 添加数据 1.1 基础语法 1.2 SQL 练习 2 修改数据 2.1 基础语法 2.2 SQL 练习 3 删除数据 3.1 基础语法 3.2 SQL 练习 总结 简介 在数据库操作中,增、删、改是最基础的操作,它们通常对应着SQL中的INSERT、DELETE和UPDATE命令。…...
Docker 部署 MinIO 对象存储服务
Docker 部署 MinIO 对象存储服务 前言一、准备工作1. 安装 Docker2. 确认服务器架构 二、设置 MinIO 容器的目录结构三、启动一个临时的 MinIO 容器来获取配置文件四、复制 MinIO 配置文件到本地目录五、删除临时 MinIO 容器六、创建并运行 MinIO 容器,挂载本地目录…...
IP段转CIDR:原理Java实现
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
翻译: 深入分析LLMs like ChatGPT 一
大家好,我想做这个视频已经有一段时间了。这是一个全面但面向普通观众的介绍,介绍像ChatGPT这样的大型语言模型。我希望通过这个视频让大家对这种工具的工作原理有一些概念性的理解。 首先,我们来谈谈你在这个文本框里输入内容并点击回车后背…...
springboot之HTML与图片生成
背景 后台需要根据字段动态生成HTML,并生成图片,发送邮件到给定邮箱 依赖 <!-- freemarker模板引擎--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-freemarker</artifa…...
数据结构(初阶)(三)----单链表
单链表 概念 概念:链表是⼀种物理存储结构上⾮连续、⾮顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。 结点 与顺序表不同的是,链表的结构类似于带车头的火车车厢,,链表的每个车厢都是独立…...
ChatGPT与DeepSeek:AI语言模型的巅峰对决
目录 引言 一、ChatGPT 与 DeepSeek 简介 (一)ChatGPT (二)DeepSeek 二、技术原理剖析 (一)ChatGPT 技术原理 (二)DeepSeek 技术原理 (三)技术原理对比…...
DaoCloud 亮相 2025 GDC丨开源赋能 AI 更多可能
2025 年 2 月 21 日至 23 日,上海徐汇西岸,2025 全球开发者先锋大会以 “模塑全球,无限可能” 的主题,围绕云计算、机器人、元宇宙等多元领域,探讨前沿技术创新、应用场景拓展和产业生态赋能,各类专业论坛、…...
人工智能之数学基础:线性代数中矩阵的运算
本文重点 矩阵的运算在解决线性方程组、描述线性变换等方面发挥着至关重要的作用。通过对矩阵进行各种运算,可以简化问题、揭示问题的本质特征。在实际应用中,我们可以利用矩阵运算来处理图像变换、数据分析、电路网络等问题。深入理解和掌握矩阵的运算,对于学习线性代数以…...
(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)
遥感图像识别: 专业词汇: kernel:卷积 目录 遥感图像分类 1.1 LeNet-5 视频来源: 任务:使用什么网络实现遥感图像的分类 LeNet-5结构: 遥感图像分类 1.2 AlexNet(冠军) 视频…...
数据集笔记:NUSMods API
1 介绍 NUSMods API 包含用于渲染 NUSMods 的数据。这些数据包括新加坡国立大学(NUS)提供的课程以及课程表的信息,还包括上课地点的详细信息。 可以使用并实验这些数据,它们是从教务处提供的官方 API 中提取的。 该 API 由静态的…...
HTML元素,标签到底指的哪块部分?单双标签何时使用?
1. 标签(Tag) vs 元素(Element) 标签(Tag) 标签是 HTML 中用于定义元素的符号,用尖括号 < > 包裹。例如 <img> 是标签。元素(Element) 元素是由 标签 内容…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
