当前位置: 首页 > news >正文

132. 分割回文串 II

简单分析

输入的参数是字符串s,返回值是最小的切割次数。那这个问题的典型解法应该是动态规划,因为我们需要找最优解,而每一步的选择可能会影响后面的结果,但可以通过子问题的最优解来构建整体最优解。

那么动态规划的状态如何定义呢?通常这种情况下,dp[i]表示前i个字符的最小分割次数。例如,对于字符串s的长度为n的情况,我们需要计算dp[n]。初始条件的话,如果整个字符串本身就是回文的,那么不需要分割,也就是dp[0]=0(这里可能需要调整索引)。

接下来需要考虑状态转移方程。对于每一个位置i,我们要检查所有可能的j(j < i),看看s[j..i-1]是否是回文。如果是的话,那么dp[i]可以取dp[j]+1中的最小值。这里的逻辑是因为如果在j处已经有一个最优解,再加上当前这一段的回文分割,就能得到i处的候选答案。

不过这样的话,时间复杂度会不会很高呢?比如,对于每个i都要遍历前面所有的j,并且每次判断回文都需要O(n)的时间,这样总的时间复杂度会是O(n^3),这在n较大的情况下可能会有问题。比如当n=1000时,这显然不行。但是原题的测试数据规模是多少呢?题目中没有给出具体限制,可能需要考虑优化。

这时候就需要想办法减少判断回文的次数。常用的方法是预处理出一个二维数组is_palindrome,其中is_palindrome[i][j]表示s从i到j是否为回文。这样预处理之后,可以在O(1)的时间内查询任意区间的回文情况。而预处理本身可以用中心扩展法或者动态规划的方法完成,时间复杂度是O(n²)。

步骤大致清晰:

  1. 预处理出所有可能的回文区间。
  2. 使用动态规划计算每个位置的最小分割次数。

具体的实现步骤是怎样的呢?

首先是预处理回文表。

以动态规划的方式来做的话,可以这样定义:对于单个字符来说,肯定是回文;两个相同字符也是回文。然后对于更长的子串,s[i...j]是回文的条件是s[i] == s[j]且中间的部分s[i+1...j-1]也是回文。因此,我们可以按子串长度从小到大填充这个表格。

另一种方法是用中心扩展,即对每个可能的中心和奇偶长度进行处理,向两边扩展直到不是回文为止。这种方法可能在某些情况下更快,但在最坏情况下还是O(n²)。

不管哪种方式,预处理得到is_palindrome数组是关键的一步。

创建二维数组palindrome,大小n x n。初始化所有长度为1和2的情况。然后按照长度递增的顺序填充其余部分。

预处理回文表:使用动态规划预处理出所有可能的回文子串,存储在一个二维数组 is_palindrome 中,其中 is_palindrome[i][j] 表示子串 s[i...j] 是否为回文

然后进行动态规划。

初始化dp数组,其中dp[0] = -1吗?或者说,假设字符串的前0个字符的分割次数是-1?比如,当i=0时,对应空字符串,此时分割次数为-1,这样在后续的计算中,比如当某个子串s[0...k]是回文时,可以直接用dp[k+1] = dp[0] + 1 = 0次分割。这可能更方便一些。

例如,假设字符串长度为n,则dp数组的大小是n+1,其中dp[i]代表前i个字符的最小分割次数。初始时,dp[0] = -1,其他设为无穷大。然后对于每个i,从1到n,我们查看所有j从0到i-1的位置,如果s[j...i-1]是回文的话,那么dp[i] = min(dp[i], dp[j] + 1)。最终结果是dp[n]的值

举个例子,假设字符串是"a"。那么预处理后is_palindrome[0][0]=true。初始化dp数组为inf,除了dp[0]=-1。当i=1时,j可以是0,此时s[0..0]是回文,所以dp[1] = dp[0]+1 = 0。正确,分割次数是0次,无需分割。

另一个例子,"ab"。这时,预处理后的is_palindrome[0][0]=true,is_palindrome[1][1]=true,is_palindrome[0][1]=false。那么对于i=1,只能是j=0的情况,分割次数0。i=2的时候,尝试j=0和j=1。j=0时,子串是ab,不是回文。j=1时,子串是b,是回文。所以dp[2] = dp[1]+1=1。即分割一次,分成a和b。

动态规划求解最小分割次数:定义 dp[i] 表示前 i 个字符的最小分割次数。初始化 dp[0] = -1(空字符串的分割次数视为-1),其余位置初始化为无穷大。遍历每个位置 i,检查所有可能的起始位置 j,若 s[j...i-1] 是回文,则更新 dp[i] = min(dp[i], dp[j] + 1)

class Solution:def minCut(self, s: str) -> int:n = len(s)# 创建一个大小为 n×n 的布尔矩阵,初始值全为 True# g[i][j] 表示子串 s[i...j] 是否为回文,初始设为 True 是因为空字符串和单个字符均被视为回文。g = [[True] * n for _ in range(n)]#  # 从末尾向前遍历起始索引 ifor i in range(n - 1, -1, -1):# 遍历结束索引 j(j > i)for j in range(i + 1, n):# 确保在处理子串 s[i...j] 时,其内部子串 s[i+1...j-1] 已经被计算过。# 状态转移方程g[i][j] 为真当且仅当:# s[i] 和 s[j] 字符相同,# 且去掉首尾后的子串 s[i+1...j-1] 也是回文(由 g[i+1][j-1] 决定)g[i][j] = (s[i] == s[j]) and g[i + 1][j - 1]# 这段代码利用动态规划预处理结果g来计算将字符串s的前i+1个字符分割成回文子串所需的最小分割次数,存储在数组f中f = [float("inf")] * nfor i in range(n):if g[0][i]:f[i] = 0else:#需要分割,遍历所有可能的切分点jfor j in range(i):if g[j + 1][i]:f[i] = min(f[i], f[j] + 1)return f[n - 1]

相关文章:

132. 分割回文串 II

简单分析 输入的参数是字符串s&#xff0c;返回值是最小的切割次数。那这个问题的典型解法应该是动态规划&#xff0c;因为我们需要找最优解&#xff0c;而每一步的选择可能会影响后面的结果&#xff0c;但可以通过子问题的最优解来构建整体最优解。 那么动态规划的状态如何定…...

【每日学点HarmonyOS Next知识】全局调整字体、h5选择框无法取消选中、margin不生效、Length转换为具体值、Prop和link比较

【每日学点HarmnoyOS Next知识】全局调整字体、h5选择框无法取消选中、margin不生效、Length转换为具体值、Prop和link比较 1、HarmonyOS 是否存在统一调整全局字体大小的方法&#xff1f; 是否存在统一调整全局字体大小的方法 可以用动态属性&#xff0c;自定义class实现At…...

九、Spring Boot:自动配置原理

深入解析 Spring Boot 自动配置原理 Spring Boot 的自动配置机制是其最核心的特性之一&#xff0c;它极大地简化了 Spring 应用的初始搭建和开发过程。通过自动配置&#xff0c;Spring Boot 能够根据项目的依赖和配置自动加载和配置 Spring 应用的各个部分。本文将深入探讨 Sp…...

(动态规划 最长重复子数组)leetcode 718

思路就是建立一个二维的dp数组&#xff0c;只要nums1[i]nums2[j]&#xff08;nums1和nums2出现重复元素就置1 并加上左上角的值) 为什么代码是nums1 i-1和nums2 i-1 答&#xff1a;因为i和j以1为初始值开始遍历的 为什么要这么做并且为什么要加dp【i-1】【j-1】&#xff1f; …...

SFP+(Enhanced Small Form-factor Pluggable)详解

1. SFP的定义 SFP&#xff08;Small Form-factor Pluggable Plus&#xff09;是SFP的增强版本&#xff0c;专为10Gbps及以上高速网络设计。它继承了SFP的小型化、热插拔特性&#xff0c;但通过优化电气接口和协议支持&#xff0c;实现了更高的传输速率&#xff08;典型为10Gbp…...

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

Deepseek对ChatGPT的冲击?

从测试工程师的视角来看&#xff0c;DeepSeek对ChatGPT的冲击主要体现在**测试场景的垂直化需求与通用模型局限性之间的博弈**。以下从技术适配性、效率优化、风险控制及未来趋势四个维度展开分析&#xff1a; --- ### **一、技术适配性&#xff1a;垂直领域能力决定工具选择…...

【Python 初级函数详解】—— 参数沙漠与作用域丛林的求生指南

欢迎来到ZyyOvO的博客✨&#xff0c;一个关于探索技术的角落&#xff0c;记录学习的点滴&#x1f4d6;&#xff0c;分享实用的技巧&#x1f6e0;️&#xff0c;偶尔还有一些奇思妙想&#x1f4a1; 本文由ZyyOvO原创✍️&#xff0c;感谢支持❤️&#xff01;请尊重原创&#x1…...

极客大学 java 进阶训练营怎么样,图文详解

Spring 思维导图 Spring 源码学习笔记 有关微服务的面试题&#xff1a; Dubbo中zookeeper做注册中心&#xff0c;如果注册中心集群都挂掉&#xff0c;发布者和订阅者之间还能通信么&#xff1f;微服务学习笔记 有关分布式的面试题&#xff1a; 消息幂等:如何保证消息不被重复…...

机器人学习模拟框架 robosuite (3) 机器人控制代码示例

Robosuite框架是一个用于机器人模拟和控制的强大工具&#xff0c;支持多种类型的机器人。 官方文档&#xff1a;Overview — robosuite 1.5 documentation 开源地址&#xff1a;https://github.com/ARISE-Initiative/robosuite 目录 1、通过键盘或SpaceMouse远程控制机器人…...

玩转python: 几个案例-掌握贪心算法

什么是贪心算法 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法策略。它不从整体最优上加以考虑&#xff0c;只做出在某种意义上的局部最优解。下面我们将通过几个案例…...

腾讯集团软件开发-后台开发方向内推

熟练掌握C/C/Java/Go等其中一门开发语言&#xff1b; TCP/UDP网络协议及相关编程、进程间通讯编程&#xff1b; 专业软件知识&#xff0c;包括算法、操作系统、软件工程、设计模式、数据结构、数据库系统、网络安全等 有一定了解的&#xff1a; 1、Python、Shell、Perl等脚本语…...

哈希碰撞攻防战——深入浅出Map/Set的底层实现

各位看官早安午安晚安呀 如果您觉得这篇文章对您有帮助的话 欢迎您一键三连&#xff0c;小编尽全力做到更好 欢迎您分享给更多人哦 今天我们来学习Map/Set的底层实现 目录 问题一&#xff1a;hash会出现负数&#xff1f;数组越界 一&#xff1a;什么是二叉搜索树&#xff1f…...

深度解析Ant Design Pro 6开发实践

深度解析Ant Design Pro 6全栈开发实践&#xff1a;从架构设计到企业级应用落地 一、Ant Design Pro 6核心特性与生态定位&#xff08;技术架构分析&#xff09; 作为Ant Design生态体系的旗舰级企业应用中台框架&#xff0c;Ant Design Pro 6基于以下技术栈实现突破性升级&am…...

用大白话解释基础框架Spring Boot——像“装修套餐”一样简单

SpringBoot是什么&#xff08;SpringBoot类似装修公司的全包套餐&#xff09; SpringBoot是Java开发者的“装修神器”&#xff0c;可以快速搭建一个应用系统&#xff0c;不用自己亲自买钉子、水泥和瓷砖&#xff08;相当于传统的Spring框架的复杂配置&#xff09;&#xff0c;…...

第十三届蓝桥杯大赛软件赛决赛C/C++ 大学 B 组

A 【2022——暴力DP / 优雅背包】-CSDN博客 B 【钟表——类日期问题】-CSDN博客 C 【卡牌——二分】-CSDN博客 D 【最大数字——DFS】-CSDN博客 E 【出差——Dijkstra】-CSDN博客 F 【费用报销——01背包】-CSDN博客 G 【故障——条件概率】-CSDN博客 H 【机房—…...

java后端开发day25--阶段项目(二)

&#xff08;以下内容全部来自上述课程&#xff09; 1.美化界面 private void initImage() {//路径分两种&#xff1a;//1.绝对路径&#xff1a;从盘符开始写的路径 D:\\aaa\\bbb\\ccc.jpg//2.相对路径&#xff1a;从当前项目开始写的路径 aaa\\bbb\\ccc.jpg//添加图片的时…...

岚图汽车2月销售8013辆,岚图知音硬核引领智能出行

据官方消息&#xff0c;岚图汽车2月销售8013辆&#xff0c;同比增长152%&#xff0c;品牌势能持续提升。其中&#xff0c;岚图知音依靠强大的产品力&#xff0c;且在OTA 2.0之后&#xff0c;其AI大模型逍遥座舱为用户带来全新的出行体验。 业内专业人士表示&#xff0c;“汽车…...

【CSS—前端快速入门】CSS 常用样式

CSS 常用 CSS 样式 1. 前端样式查询网站&#xff1a; MDN Web Docs (mozilla.org) w3school 2. border 2.1 借助 MDN 了解 border 我们借助 MDN 网站来学习 border 样式的使用&#xff1a; 2.2 border 常见属性 保存代码&#xff0c;打开页面&#xff1a; 对于标签不同样式的…...

【软考-架构】1.3、磁盘-输入输出技术-总线

GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 资料&文章更新 文章目录 存储系统&#x1f4af;考试真题输入输出技术&#x1f4af;考试真题第一题第二题 存储系统 寻道时间是指磁头移动到磁道所需的时间&#xff1b; 等待时间为等待读写的扇区转到…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...

react-pdf(pdfjs-dist)如何兼容老浏览器(chrome 49)

之前都是使用react-pdf来渲染pdf文件&#xff0c;这次有个需求是要兼容xp环境&#xff0c;xp上chrome最高支持到49&#xff0c;虽然说iframe或者embed都可以实现预览pdf&#xff0c;但为了后续的定制化需求&#xff0c;还是需要使用js库来渲染。 chrome 49测试环境 能用的测试…...