ES批量查询
在 Elasticsearch 中,multi_search(也称为 msearch)是一种允许你在单个请求中执行多个搜索操作的 API。它可以显著减少网络开销,尤其是在需要执行多个查询时。multi_search 会将多个查询打包成一个请求发送给 Elasticsearch,然后返回多个查询的结果。
1. multi_search 的基本用法
multi_search 的请求格式如下:
-
请求头:指定索引名称(可选)和搜索参数。
-
请求体:每个查询由两部分组成:
-
一个可选的
header部分,用于指定索引、类型和搜索参数。 -
一个
body部分,用于指定查询 DSL。
-
示例
以下是一个 multi_search 的示例,包含两个查询:
json
复制
POST /_msearch
{}
{"index": "index1"}
{"query": {"match_all": {}}, "size": 10}
{}
{"index": "index2"}
{"query": {"match": {"field": "value"}}, "size": 5}
-
第一个查询:在
index1中执行match_all查询,返回最多10条文档。 -
第二个查询:在
index2中执行match查询,返回最多5条文档。
2. multi_search 的响应
multi_search 的响应是一个数组,数组中的每个元素对应一个查询的结果。例如:
json
复制
{"responses": [{"took": 10,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": {"value": 100,"relation": "eq"},"max_score": 1.0,"hits": [{"_index": "index1","_type": "_doc","_id": "1","_score": 1.0,"_source": {"field": "value1"}},...]}},{"took": 5,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": {"value": 50,"relation": "eq"},"max_score": 1.5,"hits": [{"_index": "index2","_type": "_doc","_id": "2","_score": 1.5,"_source": {"field": "value2"}},...]}}]
}
-
responses:是一个数组,每个元素对应一个查询的结果。 -
每个查询的结果与普通的
_search请求返回的结果格式相同。
3. multi_search 的优势
-
减少网络开销:
-
将多个查询打包成一个请求,减少了客户端与 Elasticsearch 之间的网络往返次数。
-
适合需要同时执行多个查询的场景。
-
-
提高性能:
-
Elasticsearch 会并行处理
multi_search中的查询,从而提高查询效率。
-
-
灵活性:
-
可以在一个请求中查询多个索引,甚至可以为每个查询指定不同的索引和参数。
-
4. multi_search 的使用场景
-
批量查询:
-
当需要同时执行多个查询时,可以使用
multi_search来减少网络开销。 -
例如,在前端页面中同时加载多个模块的数据。
-
-
多索引查询:
-
当需要从多个索引中查询数据时,可以使用
multi_search来简化查询逻辑。
-
-
性能优化:
-
当需要优化查询性能时,可以将多个查询合并为一个
multi_search请求。
-
5. 示例代码
以下是一个完整的 multi_search 示例,包含两个查询:
请求
json
复制
POST /_msearch
{}
{"index": "index1"}
{"query": {"match_all": {}}, "size": 10}
{}
{"index": "index2"}
{"query": {"match": {"field": "value"}}, "size": 5}
响应
json
复制
{"responses": [{"took": 10,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": {"value": 100,"relation": "eq"},"max_score": 1.0,"hits": [{"_index": "index1","_type": "_doc","_id": "1","_score": 1.0,"_source": {"field": "value1"}},...]}},{"took": 5,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": {"value": 50,"relation": "eq"},"max_score": 1.5,"hits": [{"_index": "index2","_type": "_doc","_id": "2","_score": 1.5,"_source": {"field": "value2"}},...]}}]
}
6. 总结
-
multi_search是一种高效的批量查询机制,适合同时执行多个查询。 -
优势:减少网络开销、提高性能、支持多索引查询。
-
使用场景:批量查询、多索引查询、性能优化。
通过合理使用 multi_search,可以显著提高查询效率,尤其是在需要执行多个查询的场景中。
相关文章:
ES批量查询
在 Elasticsearch 中,multi_search(也称为 msearch)是一种允许你在单个请求中执行多个搜索操作的 API。它可以显著减少网络开销,尤其是在需要执行多个查询时。multi_search 会将多个查询打包成一个请求发送给 Elasticsearch&#…...
Vue2学习
一、Vue3 基础 监视属性 天气案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>天气案例</…...
PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单
在 PySide中,contextMenuEvent() 是 QWidget 类(以及继承自它的所有子类)的一个事件处理方法,主要用于处理上下文菜单事件,也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…...
Storm实时流式计算系统(全解)——下
storm编程案例-网站访问来源实时统计-需求 storm编程-网站访问来源实时统计-代码实现 根据以上条件可以只写一个类,我们只需要写2个方法和一个main(),一个读取/发射(spout)。 一个拿到数据统计后发到redis…...
配置Nginx日志url encode问题
文章目录 配置Nginx日志url encode问题方法1-lua方法2-set-misc-nginx-module 配置Nginx日志url encode问题 问题描述: 当自定义日志输出格式,需要输出http请求中url参数时,如果参数中包含中文,是会进行url encode的,…...
JAVA SE 包装类和泛型
文章目录 📕1. 包装类✏️1.1 基本数据类型和对应的包装类✏️1.2 装箱和拆箱✏️1.3 自动装箱和自动拆箱 📕2. 泛型✏️2.1 泛型的语法✏️2.2 泛型类的使用✏️2.3 裸类型(Raw Type)✏️2.4 擦除机制✏️2.5 泛型的上界✏️2.6 泛型方法✏️2.7 通配符…...
基于Linux系统的物联网智能终端
背景 产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的…...
从零开始开发纯血鸿蒙应用之语音朗读
从零开始开发纯血鸿蒙应用 〇、前言一、API 选型1、基本情况2、认识TextToSpeechEngine 二、功能集成实践1、改造右上角菜单2、实现语音播报功能2.1、语音引擎的获取和关闭2.2、设置待播报文本2.3、speak 目标文本2.4、设置语音回调 三、总结 〇、前言 中华汉字洋洋洒洒何其多…...
物联网小范围高精度GPS使用
在园区内实现小范围高精度GPS(全球定位系统)定位,通常需要结合多种技术来弥补传统GPS在精度和覆盖范围上的不足。以下是实现小范围高精度GPS定位的解决方案,包括技术选择、系统设计和应用场景。 一、技术选择 在园区内实现高精度…...
一次有趣的前后端跨越排查
进行前后端代码联调的时候,使用axios调用后端请求,因为都是本地进行联调,所以没有考虑跨域的问题,写了一个get的请求接口,请求后端时,突然跳出下面的问题: 错误的信息一看很像就是跨域的问题&…...
大语言模型(LLM)如何赋能时间序列分析?
引言 近年来,大语言模型(LLM)在文本生成、推理和跨模态任务中展现了惊人能力。与此同时,时间序列分析作为工业、金融、物联网等领域的核心技术,长期依赖传统统计模型(如ARIMA)或深度学习模型&a…...
Kubernetes (K8S) 核心原理深度剖析:从架构设计到运行机制
Kubernetes(K8S)作为容器编排领域的“操作系统”,其设计和实现原理是开发者进阶的必修课。本文将从架构设计、核心组件协作、关键机制实现三个维度,结合源码逻辑与实战场景,分享 K8S 的底层运行原理。 一、Kubernetes 架构设计 1. 声明式 API 与控制器模式 K8S 的核心设…...
Excel 豆知识 - XLOOKUP 为啥会出 #N/A 错误
XLOOKUP有的时候会出 #VALUE! 这个错误。 因为这个XLOOUP有个参数叫 找不到时的返回值,那么为啥还会返回 #VALUE! 呢? 可能还有别的原因,但是主要原因应该就是 检索范围 和 返回范围 不同。 比如这里检索范围在 B列,是 4-21&…...
【深度学习】Hopfield网络:模拟联想记忆
Hopfield网络是一种经典的循环神经网络,由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆,类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释: 1. 核心思想 想象你看到一张模糊的老照片,虽然…...
Python可视化大框架的研究与应用
## 摘要 随着数据科学和人工智能的快速发展,数据可视化成为了数据分析中不可或缺的一部分。Python作为一种功能强大且易于学习的编程语言,提供了多种可视化工具和库。本文旨在探讨Python可视化的主要框架,分析其特点、应用场景以及未来发展趋…...
Java 泛型(Generics)详解与使用
一、什么是 Java 泛型? 泛型(Generics)是 Java 1.5 引入的一项重要特性,主要用于 类型参数化,允许在类、接口和方法定义时使用 类型参数(Type Parameter),从而提高代码的复用性、类…...
七、Three.jsPBR材质与纹理贴图
1、PBR材质金属度和粗糙度 1、金属度metalness 金属度属性.metalness表示材质像金属的程度, 非金属材料,如木材或石材,使用0.0,金属使用1.0。 threejs的PBR材质,.metalness默认是0.5,0.0到1.0之间的值可用于生锈的金属外观 new THREE.MeshStandardMaterial({met…...
2024 ChatGPT大模型技术场景与商业应用视频精讲合集(45课).zip
2024ChatGPT大模型技术场景与商业应用视频精讲合集,共十三章,45课。 01. 第一章 ChatGPT:通用人工智能的典范 1.1 ChatGPT概述 .mp4 1.2 通用能力 .mp4 1.3 通用人工智能风口 .mp4 02. 第二章 大模型:ChatGPT的核心支撑 2.1 底层…...
Pytest之parametrize参数化
文章目录 1.前言2.单参数3.多参数4.字典形式5.parametrize 结合 ids 参数 1.前言 在 pytest 中,parametrize 是一个非常实用的装饰器,它允许你对测试函数进行参数化,即使用不同的参数组合多次运行同一个测试函数,从而更高效地进行…...
Python面试(八股)
1. 可变对象和不可变对象 (1). 不可变对象( Immutable Objects ) 不可变对象指的是那些一旦创建后其内容就不能被修改的对象。如果尝试修改不可变对象的内容,将会创建一个新的对象而不是修改原来的对象。常见的不可变类型包括: …...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
