基于Linux系统的物联网智能终端
背景
产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的是满足项目需求,只要满足了需求就达到了目的。产品开发就不太一样,产品开发更像是终身制的项目,要解决随时在不同项目中使用时出现的问题,也要能满足不同应用场景下的使用。
嵌入式软件基本分为了两个流派,从技术层面来讲,一个是基于MCU来开发的,一个是基于MPU来开发的,当年我有很多同事都不理解你一个搞MCU的开发个产品有什么难的,还一个团队十来个人搞这么长时间,有这种想法的人一般都是搞项目开发的高手,不管是基于MCU还是基于MPU,只要是开发产品,都不是个很简单的事情。
早些年都是基于MCU来开发产品,资源有限,处理能力有限,经常会有很多需求无法实现,或者实现起来太麻烦,没法站在开源的巨人肩膀上走的更远。正好在搞项目开发时,公司提出来一个看似不太明确的产品需求,却有明确的项目交期,在这种情况下,只能用最保险的方式,最大的扩展方式来实现产品的开发。
需求
- 宽电压供电,DC9~35V;
- 支持两路百兆以太网;
- 支持4G/5G/Wifi通讯;
- 可外接北斗2/3进行卫星通讯;
- 支持LoRa本地组网;
- 支持继电器控制/数字量采集/CAN总线/RS232总线/RS485总线;
- 支持MQTT标准协议;
- 支持Onenet,阿里云等物联网平台;
- 支持外接TF卡;
- 支持网络摄像头;
技术难点
- 最大的难点是需求不明确,不清楚使用场景;
- 宽电压范围这个还好说,国产电源芯片可以满足;
- 基于新唐的NUC980来实现,内置DDR,减少了硬件工程师的一个风险,官方提供Linux 4.4的内核;
- 基于Linux系统这些外设的驱动实现也是个问题,好在疫情期间跟原厂的工程师建立了微信群,全部协调解决了;
- 软件的扩展性,在这里很重要,用它来应对多变的需求。
设计时没有急于开工,首先通过分析,来将功能进行了划分,拆分架构时参考了冯·诺依曼架构是现代计算机的基础的理论,对设备采集数据,处理数据,存储数据,上传数据等进行类拆分。再加上一些现在开发软件时微服务的概念,将设备内部分成了多个小程序,然后利用TCP协议,在设备内部进行交互。
大体功能模块的划分如下:
- Linux系统,为各个小程序的执行提供运行基础;
- 采集程序,负责前端传感器数据采集,支持周期性采集,触发采集;
- 数据处理程序,负责将采集到数据转化为标准数据;
- 协议处理程序,负责将上下行的数据解析处理,并周期性打包数据上传,接收服务的下行指令的解析处理;
- 中心调度程序,负责将各个子任务的数据进行转发,监控各个子任务的执行情况,并负责维护各个子任务的执行状态;
- 数据管理程序,负责启用数据库,将历史数据存入数据库,并对其它程序提供数据查询服务;
- 通讯程序,负责建立对应的通讯链路,并维护链路的链接;
- 配置程序,负责对外提供web页面,用户可通过web页面对系统的参数,应用程序的参数等进行配置,并对运行过程的数据进行查看;
内部的小程序之间通讯都是基于TCP进行的,设备可以实现集群部署,可以单台设备实现其中的部分功能,来增加整个系统的性能。
产品对外接口有各种灵活性,具体配置如下:

产品内置web服务器,配置界面如下所示:

配置界面如下所示:

内部应用程序如下图所示:
关于架构层面的设计,以后慢慢逐步展开。
相关文章:
基于Linux系统的物联网智能终端
背景 产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的…...
从零开始开发纯血鸿蒙应用之语音朗读
从零开始开发纯血鸿蒙应用 〇、前言一、API 选型1、基本情况2、认识TextToSpeechEngine 二、功能集成实践1、改造右上角菜单2、实现语音播报功能2.1、语音引擎的获取和关闭2.2、设置待播报文本2.3、speak 目标文本2.4、设置语音回调 三、总结 〇、前言 中华汉字洋洋洒洒何其多…...
物联网小范围高精度GPS使用
在园区内实现小范围高精度GPS(全球定位系统)定位,通常需要结合多种技术来弥补传统GPS在精度和覆盖范围上的不足。以下是实现小范围高精度GPS定位的解决方案,包括技术选择、系统设计和应用场景。 一、技术选择 在园区内实现高精度…...
一次有趣的前后端跨越排查
进行前后端代码联调的时候,使用axios调用后端请求,因为都是本地进行联调,所以没有考虑跨域的问题,写了一个get的请求接口,请求后端时,突然跳出下面的问题: 错误的信息一看很像就是跨域的问题&…...
大语言模型(LLM)如何赋能时间序列分析?
引言 近年来,大语言模型(LLM)在文本生成、推理和跨模态任务中展现了惊人能力。与此同时,时间序列分析作为工业、金融、物联网等领域的核心技术,长期依赖传统统计模型(如ARIMA)或深度学习模型&a…...
Kubernetes (K8S) 核心原理深度剖析:从架构设计到运行机制
Kubernetes(K8S)作为容器编排领域的“操作系统”,其设计和实现原理是开发者进阶的必修课。本文将从架构设计、核心组件协作、关键机制实现三个维度,结合源码逻辑与实战场景,分享 K8S 的底层运行原理。 一、Kubernetes 架构设计 1. 声明式 API 与控制器模式 K8S 的核心设…...
Excel 豆知识 - XLOOKUP 为啥会出 #N/A 错误
XLOOKUP有的时候会出 #VALUE! 这个错误。 因为这个XLOOUP有个参数叫 找不到时的返回值,那么为啥还会返回 #VALUE! 呢? 可能还有别的原因,但是主要原因应该就是 检索范围 和 返回范围 不同。 比如这里检索范围在 B列,是 4-21&…...
【深度学习】Hopfield网络:模拟联想记忆
Hopfield网络是一种经典的循环神经网络,由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆,类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释: 1. 核心思想 想象你看到一张模糊的老照片,虽然…...
Python可视化大框架的研究与应用
## 摘要 随着数据科学和人工智能的快速发展,数据可视化成为了数据分析中不可或缺的一部分。Python作为一种功能强大且易于学习的编程语言,提供了多种可视化工具和库。本文旨在探讨Python可视化的主要框架,分析其特点、应用场景以及未来发展趋…...
Java 泛型(Generics)详解与使用
一、什么是 Java 泛型? 泛型(Generics)是 Java 1.5 引入的一项重要特性,主要用于 类型参数化,允许在类、接口和方法定义时使用 类型参数(Type Parameter),从而提高代码的复用性、类…...
七、Three.jsPBR材质与纹理贴图
1、PBR材质金属度和粗糙度 1、金属度metalness 金属度属性.metalness表示材质像金属的程度, 非金属材料,如木材或石材,使用0.0,金属使用1.0。 threejs的PBR材质,.metalness默认是0.5,0.0到1.0之间的值可用于生锈的金属外观 new THREE.MeshStandardMaterial({met…...
2024 ChatGPT大模型技术场景与商业应用视频精讲合集(45课).zip
2024ChatGPT大模型技术场景与商业应用视频精讲合集,共十三章,45课。 01. 第一章 ChatGPT:通用人工智能的典范 1.1 ChatGPT概述 .mp4 1.2 通用能力 .mp4 1.3 通用人工智能风口 .mp4 02. 第二章 大模型:ChatGPT的核心支撑 2.1 底层…...
Pytest之parametrize参数化
文章目录 1.前言2.单参数3.多参数4.字典形式5.parametrize 结合 ids 参数 1.前言 在 pytest 中,parametrize 是一个非常实用的装饰器,它允许你对测试函数进行参数化,即使用不同的参数组合多次运行同一个测试函数,从而更高效地进行…...
Python面试(八股)
1. 可变对象和不可变对象 (1). 不可变对象( Immutable Objects ) 不可变对象指的是那些一旦创建后其内容就不能被修改的对象。如果尝试修改不可变对象的内容,将会创建一个新的对象而不是修改原来的对象。常见的不可变类型包括: …...
2024年第十五届蓝桥杯大赛软件赛省赛Python大学A组真题解析《更新中》
文章目录 试题A: 拼正方形(本题总分:5 分)解析答案试题B: 召唤数学精灵(本题总分:5 分)解析答案试题C: 数字诗意解析答案试题D:回文数组试题A: 拼正方形(本题总分:5 分) 【问题描述】 小蓝正在玩拼图游戏,他有7385137888721 个2 2 的方块和10470245 个1 1 的方块,他需…...
湖仓一体概述
湖仓一体之前,数据分析经历了数据库、数据仓库和数据湖分析三个时代。 首先是数据库,它是一个最基础的概念,主要负责联机事务处理,也提供基本的数据分析能力。 随着数据量的增长,出现了数据仓库,它存储的是…...
【行政区划获取】
行政区划获取 获取2023年的行政区划,并以 编码: 省市区 格式保存为字典方便后续调用 注:网址可能会更新,根据最新的来 # 获取并保存行政区划代码 import requests from lxml import etree import jsondef fetch_html(url):""&quo…...
【深入剖析:机器学习、深度学习与人工智能的关系】
深入剖析:机器学习、深度学习与人工智能的关系 在当今数字化时代,人工智能(AI)、机器学习(ML)和深度学习(DL)这些术语频繁出现在各种科技报道和讨论中,它们相互关联又各…...
Docker 学习(一)
一、Docker 核心概念 Docker 是一个开源的容器化平台,允许开发者将应用及其所有依赖(代码、运行时、系统工具、库等)打包成一个轻量级、可移植的“容器”,实现 “一次构建,随处运行”。 1、容器(Container…...
flink web ui未授权漏洞处理
本文通过nginx代理的方式来处理未授权漏洞问题。 1.安装nginx 通过yum install nginx 2.添加账号和密码 安装htpasswd工具,yum install httpd-tools sudo htpasswd -c /etc/nginx/conf.d/.passwd flink # 需安装httpd-tools:ml-citation{ref"1,4" dat…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...
