当前位置: 首页 > news >正文

AIGC和搜索引擎的异同

AIGC(生成式人工智能)与搜索引擎的核心差异体现在信息处理方式和输出形态上,我们可以从以下维度对比:

一、工作原理的本质差异

  1. 信息检索机制

    • 搜索引擎:基于关键词匹配(如"中暑怎么办"→返回相关网页链接),依赖PageRank等算法排序结果
    • AIGC:通过大模型(如GPT AI推理流程→意图识别→知识检索→逻辑重组→生成输出
  2. 技术架构对比

    • 传统搜索:爬虫抓取→建立索引→关键词匹配→返回链接
    • AI搜索:混合检索(向量+关键词)→语义重排→大模型生成

用日常生活中的例子来解释,搜索引擎和生成式AI的区别就像查字典 vs 问老师

  1. 查字典(搜索引擎)
    当你问“中暑怎么办”,它会把所有相关网页链接给你,就像字典列出所有包含“中”和“暑”的页面,需要你自己挨个翻找。比如搜“做蛋糕”,会得到20个食谱链接,你得一个个点开看哪个靠谱。

  2. 问老师(生成式AI)
    同样的问题,AI会像经验丰富的老师,直接告诉你:“先移到阴凉处,补充淡盐水,用湿毛巾降温”,还会附上权威医学网站来源。如果你追问“没有淡盐水怎么办”,它能接着建议“喝运动饮料或稀释的果汁”。

二、用户体验的关键区别

维度搜索引擎AIGC
交互方式单向输入关键词,需手动筛选链接多轮对话,支持追问和修正
结果形态网页链接列表(含广告/SEO内容)结构化答案(附带数据溯源)
响应速度毫秒级返回(依赖缓存)秒级生成(需模型推理)
个性化程度基于历史搜索的静态推荐动态学习用户偏好的自适应输出

三、应用场景的分野与融合

  1. 优势场景

    • 搜索引擎更适合:
      • 获取实时新闻(如2025年2月最新政策)
      • 查找学术论文原文(需访问知网/Elsevier)
    • AIGC更擅长:
      • 生成代码/文案(如自动编写Python爬虫脚本)
      • 多模态创作(如用DALL·E3生成防诈骗漫画)
  2. 融合趋势
    新一代AI搜索工具(如Perplexity、秘塔AI)采用RAG架构

    • 先用传统引擎获取实时数据
    • 再用大模型提炼答案并标注来源
    • 实现准确率提升37%(相比纯生成模型)

四、局限性与互补性

  • AIGC的短板
    • 数据时效性依赖外部检索(如无法主动获取2025年2月27日当天事件)
    • 生成内容可能存在幻觉(某测试显示错误率约3-15%)
  • 搜索引擎的瓶颈
    • 处理复杂问题时效率低下(如对比10份财报需人工操作)
    • 受SEO干扰导致信息质量下降(广告链接占比超30%)

相关文章:

AIGC和搜索引擎的异同

AIGC(生成式人工智能)与搜索引擎的核心差异体现在信息处理方式和输出形态上,我们可以从以下维度对比: 一、工作原理的本质差异 信息检索机制 搜索引擎:基于关键词匹配(如"中暑怎么办"→返回相关…...

ES批量查询

在 Elasticsearch 中,multi_search(也称为 msearch)是一种允许你在单个请求中执行多个搜索操作的 API。它可以显著减少网络开销,尤其是在需要执行多个查询时。multi_search 会将多个查询打包成一个请求发送给 Elasticsearch&#…...

Vue2学习

一、Vue3 基础 监视属性 天气案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>天气案例</…...

PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单

在 PySide中&#xff0c;contextMenuEvent() 是 QWidget 类&#xff08;以及继承自它的所有子类&#xff09;的一个事件处理方法&#xff0c;主要用于处理上下文菜单事件&#xff0c;也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…...

Storm实时流式计算系统(全解)——下

storm编程案例-网站访问来源实时统计-需求 storm编程-网站访问来源实时统计-代码实现 根据以上条件可以只写一个类&#xff0c;我们只需要写2个方法和一个main&#xff08;&#xff09;&#xff0c;一个读取/发射&#xff08;spout&#xff09;。 一个拿到数据统计后发到redis…...

配置Nginx日志url encode问题

文章目录 配置Nginx日志url encode问题方法1-lua方法2-set-misc-nginx-module 配置Nginx日志url encode问题 问题描述&#xff1a; 当自定义日志输出格式&#xff0c;需要输出http请求中url参数时&#xff0c;如果参数中包含中文&#xff0c;是会进行url encode的&#xff0c…...

JAVA SE 包装类和泛型

文章目录 &#x1f4d5;1. 包装类✏️1.1 基本数据类型和对应的包装类✏️1.2 装箱和拆箱✏️1.3 自动装箱和自动拆箱 &#x1f4d5;2. 泛型✏️2.1 泛型的语法✏️2.2 泛型类的使用✏️2.3 裸类型(Raw Type)✏️2.4 擦除机制✏️2.5 泛型的上界✏️2.6 泛型方法✏️2.7 通配符…...

基于Linux系统的物联网智能终端

背景 产品研发和项目研发有什么区别&#xff1f;一个令人发指的问题&#xff0c;刚开始工作时项目开发居多&#xff0c;认为项目开发和产品开发区别不大&#xff0c;待后来随着自身能力的提升&#xff0c;逐步感到要开发一个好产品还是比较难的&#xff0c;我认为项目开发的目的…...

从零开始开发纯血鸿蒙应用之语音朗读

从零开始开发纯血鸿蒙应用 〇、前言一、API 选型1、基本情况2、认识TextToSpeechEngine 二、功能集成实践1、改造右上角菜单2、实现语音播报功能2.1、语音引擎的获取和关闭2.2、设置待播报文本2.3、speak 目标文本2.4、设置语音回调 三、总结 〇、前言 中华汉字洋洋洒洒何其多…...

物联网小范围高精度GPS使用

在园区内实现小范围高精度GPS&#xff08;全球定位系统&#xff09;定位&#xff0c;通常需要结合多种技术来弥补传统GPS在精度和覆盖范围上的不足。以下是实现小范围高精度GPS定位的解决方案&#xff0c;包括技术选择、系统设计和应用场景。 一、技术选择 在园区内实现高精度…...

一次有趣的前后端跨越排查

进行前后端代码联调的时候&#xff0c;使用axios调用后端请求&#xff0c;因为都是本地进行联调&#xff0c;所以没有考虑跨域的问题&#xff0c;写了一个get的请求接口&#xff0c;请求后端时&#xff0c;突然跳出下面的问题&#xff1a; 错误的信息一看很像就是跨域的问题&…...

大语言模型(LLM)如何赋能时间序列分析?

引言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在文本生成、推理和跨模态任务中展现了惊人能力。与此同时&#xff0c;时间序列分析作为工业、金融、物联网等领域的核心技术&#xff0c;长期依赖传统统计模型&#xff08;如ARIMA&#xff09;或深度学习模型&a…...

Kubernetes (K8S) 核心原理深度剖析:从架构设计到运行机制

Kubernetes(K8S)作为容器编排领域的“操作系统”,其设计和实现原理是开发者进阶的必修课。本文将从架构设计、核心组件协作、关键机制实现三个维度,结合源码逻辑与实战场景,分享 K8S 的底层运行原理。 一、Kubernetes 架构设计 1. 声明式 API 与控制器模式 K8S 的核心设…...

Excel 豆知识 - XLOOKUP 为啥会出 #N/A 错误

XLOOKUP有的时候会出 #VALUE! 这个错误。 因为这个XLOOUP有个参数叫 找不到时的返回值&#xff0c;那么为啥还会返回 #VALUE! 呢&#xff1f; 可能还有别的原因&#xff0c;但是主要原因应该就是 检索范围 和 返回范围 不同。 比如这里检索范围在 B列&#xff0c;是 4-21&…...

【深度学习】Hopfield网络:模拟联想记忆

Hopfield网络是一种经典的循环神经网络&#xff0c;由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆&#xff0c;类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释&#xff1a; 1. 核心思想 想象你看到一张模糊的老照片&#xff0c;虽然…...

Python可视化大框架的研究与应用

## 摘要 随着数据科学和人工智能的快速发展&#xff0c;数据可视化成为了数据分析中不可或缺的一部分。Python作为一种功能强大且易于学习的编程语言&#xff0c;提供了多种可视化工具和库。本文旨在探讨Python可视化的主要框架&#xff0c;分析其特点、应用场景以及未来发展趋…...

Java 泛型(Generics)详解与使用

一、什么是 Java 泛型&#xff1f; 泛型&#xff08;Generics&#xff09;是 Java 1.5 引入的一项重要特性&#xff0c;主要用于 类型参数化&#xff0c;允许在类、接口和方法定义时使用 类型参数&#xff08;Type Parameter&#xff09;&#xff0c;从而提高代码的复用性、类…...

七、Three.jsPBR材质与纹理贴图

1、PBR材质金属度和粗糙度 1、金属度metalness 金属度属性.metalness表示材质像金属的程度, 非金属材料,如木材或石材,使用0.0,金属使用1.0。 threejs的PBR材质&#xff0c;.metalness默认是0.5,0.0到1.0之间的值可用于生锈的金属外观 new THREE.MeshStandardMaterial({met…...

2024 ChatGPT大模型技术场景与商业应用视频精讲合集(45课).zip

2024ChatGPT大模型技术场景与商业应用视频精讲合集&#xff0c;共十三章&#xff0c;45课。 01. 第一章 ChatGPT&#xff1a;通用人工智能的典范 1.1 ChatGPT概述 .mp4 1.2 通用能力 .mp4 1.3 通用人工智能风口 .mp4 02. 第二章 大模型&#xff1a;ChatGPT的核心支撑 2.1 底层…...

Pytest之parametrize参数化

文章目录 1.前言2.单参数3.多参数4.字典形式5.parametrize 结合 ids 参数 1.前言 在 pytest 中&#xff0c;parametrize 是一个非常实用的装饰器&#xff0c;它允许你对测试函数进行参数化&#xff0c;即使用不同的参数组合多次运行同一个测试函数&#xff0c;从而更高效地进行…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...