当前位置: 首页 > news >正文

Redis---LRU原理与算法实现

文章目录

    • LRU概念理解
    • LRU原理
    • 基于HashMap和双向链表实现LRU
    • Redis中的LRU的实现
      • LRU时钟
      • 淘汰策略
      • 近似LRU的实现
      • LRU算法的优化
    • Redis LRU的核心代码逻辑
    • Redis LRU的核心代码逻辑
    • Redis LRU的配置参数
    • Redis LRU的优缺点
    • Redis LRU的优缺点


LRU概念理解

LRU(Least Recently Used) 最近最少使用算法,是一种常用的页面置换算法,广泛应用于操作系统中的内存管理和缓存系统。LRU 的基本思想是:当缓存空间满时,当需要置换页面时,选择最近最少使用的页面进行淘汰。

LRU原理

可以用一个特殊的栈来保存当前正在使用的各个页面的页面号。当一个新的进程访问某页面时,便将该页面号压入栈顶,其他的页面号往栈底移,如果内存不够,则将栈底的页面号移除。这样,栈顶始终是最新被访问的页面的编号,而栈底则是最近最久未访问的页面的页面号。

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。

img

基于HashMap和双向链表实现LRU

HahsMap用于快速查找到结点所在位置,然后将使用到的结点放在对头,这样最近最少使用的结点自然就落入到队尾。双向链表提供了良好的灵活性,两边可达。如下图所示。

img

假设我们需要执行如下操作

save(“key1”, 7)

save(“key2”, 0)

save(“key3”, 1)

save(“key4”, 2)

get(“key2”)

save(“key5”, 3)

get(“key2”)

save(“key6”, 4)

使用HashMap + 双向链表数据结构实现的LRU操作双向链表部分的轨迹如下。

img

核心操作的步骤:

  • save(key, value)
    • 首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。
    • 如果不存在,需要构造新的节点,并且尝试把节点塞到队头。
    • 如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
  • get(key),通过 HashMap 找到 LRU 链表节点,把节点插入到队头,返回缓存的值。

完整基于Java的代码参考如下

package LRU;import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;public class LRUCache {// 定义双向链表的节点类class DLinkedNode {String key; // 节点的键int value; // 节点的值DLinkedNode pre; // 前驱节点DLinkedNode post; // 后继节点}// 使用ConcurrentHashMap来存储缓存数据,保证线程安全private ConcurrentMap<String, DLinkedNode> cache = new ConcurrentHashMap<String, DLinkedNode>();private int count; // 当前缓存中的元素数量private int capacity; // 缓存的最大容量private DLinkedNode head, tail; // 双向链表的头节点和尾节点// 构造函数,初始化LRU缓存public LRUCache(int capacity) {this.count = 0;this.capacity = capacity;// 初始化头节点和尾节点head = new DLinkedNode();head.pre = null;tail = new DLinkedNode();tail.post = null;// 头节点和尾节点相互连接head.post = tail;tail.pre = head;}// 获取缓存中的值public int get(String key) {DLinkedNode node = cache.get(key);if(node == null){return -1; // 如果缓存中没有该键,返回-1}// 将该节点移动到链表头部,表示最近使用moveToHead(node);return node.value;}// 向缓存中插入或更新值public void put(String key, int value) {DLinkedNode node = cache.get(key);if (node != null) {// 如果键已存在,更新值并将节点移动到链表头部node.value = value;moveToHead(node);return;}// 创建新节点DLinkedNode newNode = new DLinkedNode();newNode.key = key;newNode.value = value;// 将新节点加入缓存和链表头部cache.put(key, newNode);addNode(newNode);++count;// 如果缓存已满,移除链表尾部的节点(最久未使用的节点)if(count > capacity){DLinkedNode tail = popTail();cache.remove(tail.key);--count;}}// 将节点添加到链表头部private void addNode(DLinkedNode node){node.pre = head;node.post = head.post;head.post.pre = node;head.post = node;}// 从链表中移除节点private void removeNode(DLinkedNode node){DLinkedNode pre = node.pre;DLinkedNode post = node.post;pre.post = post;post.pre = pre;}// 将节点移动到链表头部private void moveToHead(DLinkedNode node){removeNode(node);addNode(node);}// 移除链表尾部的节点并返回该节点private DLinkedNode popTail(){DLinkedNode res = tail.pre;removeNode(res);return res;}
}

测试LRUCache

package LRU;public class LRUCacheTest {public static void main(String[] args) {// 创建一个容量为 3 的 LRU 缓存LRUCache cache = new LRUCache(3);// 插入键值对cache.put("key1", 1);cache.put("key2", 2);cache.put("key3", 3);// 测试获取操作System.out.println("key1 的值: " + cache.get("key1")); // 应返回 1System.out.println("key2 的值: " + cache.get("key2")); // 应返回 2System.out.println("key3 的值: " + cache.get("key3")); // 应返回 3// 插入新键值对,触发淘汰策略(key1 是最久未使用的,应被淘汰)cache.put("key4", 4);// 测试淘汰策略System.out.println("key1 的值: " + cache.get("key1")); // 应返回 -1,因为 key1 已被淘汰System.out.println("key4 的值: " + cache.get("key4")); // 应返回 4// 更新现有键的值,并测试是否移动到链表头部cache.put("key2", 20);System.out.println("key2 更新后的值: " + cache.get("key2")); // 应返回 20// 插入新键值对,触发淘汰策略(key3 是最久未使用的,应被淘汰)cache.put("key5", 5);// 测试淘汰策略System.out.println("key3 的值: " + cache.get("key3")); // 应返回 -1,因为 key3 已被淘汰System.out.println("key5 的值: " + cache.get("key5")); // 应返回 5// 打印当前缓存中的所有键值对System.out.println("当前缓存内容:");System.out.println("key2: " + cache.get("key2")); // 应返回 20System.out.println("key4: " + cache.get("key4")); // 应返回 4System.out.println("key5: " + cache.get("key5")); // 应返回 5}
}

输出结果:

image-20250228090835350

Redis中的LRU的实现

Redis 的 LRU 实现与传统的 LRU 算法有所不同。由于 Redis 是一个高性能的内存数据库,完全实现标准的 LRU 算法会带来较大的性能开销。因此,Redis 采用了一种 近似 LRU(Approximated LRU) 算法,在保证性能的同时,尽可能接近标准的 LRU 行为。

LRU时钟

Redis 为每个对象(键值对)维护一个 lru 字段,用于记录该对象最后一次被访问的时间戳。这个时间戳是一个 24 位的整数,表示从 Redis 启动开始计算的秒数的低 24 位。

  • LRU 时钟的更新
    • 每次访问一个键时(例如 GETSET),Redis 会更新该键的 lru 字段为当前的 LRU 时钟值。
    • LRU 时钟的值会定期更新(默认每 100 毫秒更新一次)。

淘汰策略

当 Redis 需要淘汰键时(例如内存不足时),会根据配置的淘汰策略选择一个键进行删除。Redis 支持多种淘汰策略,其中与 LRU 相关的策略包括:

  • volatile-lru:从设置了过期时间的键中,淘汰最近最少使用的键。
  • allkeys-lru:从所有键中,淘汰最近最少使用的键。

近似LRU的实现

Redis 并不完全遍历所有键来找到最久未使用的键,而是通过以下方式近似实现 LRU:

  • 随机采样:Redis 会随机选择一定数量的键(默认是 5 个),然后从这些键中淘汰 lru 值最小的键(即最久未使用的键)。
  • 采样数量:可以通过配置 maxmemory-samples 参数来调整采样数量。采样数量越多,淘汰的精度越高,但性能开销也越大。

LRU算法的优化

为了进一步优化性能,Redis 做了一些额外的优化:

  • 惰性删除:Redis 不会在每次访问时都更新 lru 字段,而是通过一些启发式方法减少更新频率。
  • 淘汰池:Redis 维护一个淘汰池(eviction pool),用于缓存一些候选键,避免每次淘汰时都需要重新采样。

Redis LRU的核心代码逻辑

以下是 Redis 中 LRU 实现的核心逻辑(伪代码):

// 更新键的 LRU 时间戳
void updateLRU(redisObject *obj) {obj->lru = getCurrentLRUClock();
}// 获取当前的 LRU 时钟
unsigned int getCurrentLRUClock() {return (server.unixtime & LRU_CLOCK_MAX) | (server.lruclock & ~LRU_CLOCK_MAX);
}// 近似 LRU 淘汰算法
void evictKeysUsingLRU() {int sample_count = server.maxmemory_samples;redisObject *best_key = NULL;unsigned int best_lru = LRU_CLOCK_MAX;// 随机采样for (int i = 0; i < sample_count; i++) {redisObject *key = getRandomKey();if (key->lru < best_lru) {best_key = key;best_lru = key->lru;}}// 淘汰最久未使用的键if (best_key != NULL) {deleteKey(best_key);}
}

Redis LRU的核心代码逻辑

以下是 Redis 中 LRU 实现的核心逻辑(伪代码):

// 更新键的 LRU 时间戳
void updateLRU(redisObject *obj) {obj->lru = getCurrentLRUClock();
}// 获取当前的 LRU 时钟
unsigned int getCurrentLRUClock() {return (server.unixtime & LRU_CLOCK_MAX) | (server.lruclock & ~LRU_CLOCK_MAX);
}// 近似 LRU 淘汰算法
void evictKeysUsingLRU() {int sample_count = server.maxmemory_samples;redisObject *best_key = NULL;unsigned int best_lru = LRU_CLOCK_MAX;// 随机采样for (int i = 0; i < sample_count; i++) {redisObject *key = getRandomKey();if (key->lru < best_lru) {best_key = key;best_lru = key->lru;}}// 淘汰最久未使用的键if (best_key != NULL) {deleteKey(best_key);}
}

Redis LRU的配置参数

  1. maxmemory
    • 设置 Redis 实例的最大内存限制。
    • 当内存使用达到该限制时,Redis 会根据淘汰策略删除键。
  2. maxmemory-policy
    • 设置淘汰策略,支持以下选项:
      • volatile-lru:从设置了过期时间的键中淘汰最近最少使用的键。
      • allkeys-lru:从所有键中淘汰最近最少使用的键。
      • volatile-random:从设置了过期时间的键中随机淘汰键。
      • allkeys-random:从所有键中随机淘汰键。
      • volatile-ttl:从设置了过期时间的键中淘汰剩余生存时间(TTL)最短的键。
      • noeviction:不淘汰任何键,直接返回错误。
  3. maxmemory-samples
    • 设置 LRU 淘汰时的采样数量。
    • 默认值为 5,表示每次淘汰时随机选择 5 个键,然后淘汰其中最久未使用的键。
    • 增加该值可以提高淘汰的精度,但会增加 CPU 开销。

Redis LRU的优缺点

优点:

  1. 高性能
    • 通过随机采样和近似算法,Redis 的 LRU 实现避免了完全遍历所有键的开销。
  2. 灵活性
    • 支持多种淘汰策略,可以根据业务需求灵活配置。
  3. 内存友好
    • 每个键只需要额外存储 24 位的 lru 字段,内存开销较小。

缺点:

  1. 近似性
    • Redis 的 LRU 是近似的,可能无法完全准确地淘汰最久未使用的键。
  2. 采样数量影响精度
    • 采样数量较少时,淘汰的精度可能较低。
      择 5 个键,然后淘汰其中最久未使用的键。
    • 增加该值可以提高淘汰的精度,但会增加 CPU 开销。

Redis LRU的优缺点

优点:

  1. 高性能
    • 通过随机采样和近似算法,Redis 的 LRU 实现避免了完全遍历所有键的开销。
  2. 灵活性
    • 支持多种淘汰策略,可以根据业务需求灵活配置。
  3. 内存友好
    • 每个键只需要额外存储 24 位的 lru 字段,内存开销较小。

缺点:

  1. 近似性
    • Redis 的 LRU 是近似的,可能无法完全准确地淘汰最久未使用的键。
  2. 采样数量影响精度
    • 采样数量较少时,淘汰的精度可能较低。

相关文章:

Redis---LRU原理与算法实现

文章目录 LRU概念理解LRU原理基于HashMap和双向链表实现LRURedis中的LRU的实现LRU时钟淘汰策略近似LRU的实现LRU算法的优化 Redis LRU的核心代码逻辑Redis LRU的核心代码逻辑Redis LRU的配置参数Redis LRU的优缺点Redis LRU的优缺点 LRU概念理解 LRU&#xff08;Least Recentl…...

matlab 包围盒中心匹配法实现点云粗配准

目录 一、算法原理1、原理概述2、参考文献二、代码实现三、结果展示1、初始位置2、配准结果本文由CSDN点云侠原创,原文链接,首发于:20255年3月3日。 一、算法原理 1、原理概述 包围盒中心匹配法是将源点云 P P P...

Mermaid语法介绍

一、基础语法 图表声明 使用 graph TD&#xff08;自上而下&#xff09;或 graph LR&#xff08;从左到右&#xff09;定义图表方向&#xff0c;节点间用箭头连接。例如&#xff1a; #mermaid-svg-WLayaaK0Ui6cKr5Z {font-family:"trebuchet ms",verdana,arial,sans…...

RHCE9.0版本笔记3:创建、查看和编辑文本文件

一、文件操作在RHCE中的核心地位 无论是配置系统服务&#xff08;如httpd/sshd&#xff09;、编写Ansible Playbook&#xff0c;还是分析日志文件&#xff0c;都离不开对文本文件的精确控制。 文件创建四大技法 1.快速创建空文件 # 标准创建方式 $ touch server.conf # 批量…...

VSCode知名主题带毒 安装量900万次

目前微软已经从 Visual Studio Marketplace 中删除非常流行的主题扩展 Material Theme Free 和 Material Theme Icons&#xff0c;微软称这些主题扩展包含恶意代码。 统计显示这些扩展程序的安装总次数近 900 万次&#xff0c;在微软实施删除后现在已安装这些扩展的开发者也会…...

deepseek、腾讯元宝deepseek R1、百度deepseekR1关系

分析与结论 区别与联系 技术基础与定制方向&#xff1a; DeepSeek官网R1版本&#xff1a;作为基础版本&#xff0c;通常保留通用性设计&#xff0c;适用于广泛的AI应用场景&#xff08;如自然语言处理、数据分析等&#xff09;。其优势在于技术原生性和官方直接支持。腾讯元宝…...

二、QT和驱动模块实现智能家居-----5、通过QT控制LED

在QT界面&#xff0c;我们要实现点击“LED”按钮就可以控制板子上的LED。LED接线图如下&#xff1a; 在Linux 系统里&#xff0c;我们可以使用2种方法去操作上面的LED&#xff1a; ① 使用GPIO SYSFS系统&#xff1a;这需要一定的硬件知识&#xff0c;需要设置引脚的方向、数值…...

基于Android平台的SOME/IP测试模块 EPT-ETS

在汽车产业智能化、网联化的时代浪潮中&#xff0c;汽车电子系统正经历着前所未有的变革。SOME/IP&#xff08;Scalable service-Oriented MiddlewarE over IP&#xff09;协议作为汽车电子通信领域的关键技术&#xff0c;其稳定性、可靠性与高效性对于整车性能的提升起着至关重…...

QT实现计算器

1&#xff1a;在注册登录的练习里面&#xff0c; 追加一个QListWidget 项目列表 要求&#xff1a;点击注册之后&#xff0c;将账号显示到 listWidget上面去 以及&#xff0c;在listWidget中双击某个账号的时候&#xff0c;将该账号删除 Widget.h #ifndef WIDGET_H #define…...

Go红队开发—语法补充

文章目录 错误控制使用自定义错误类型错误包装errors.Is 和 errors.Aspanic捕获、recover 、defer错误控制练习 接口结构体实现接口基本类型实现接口切片实现接口 接口练习Embed嵌入文件 之前有师傅问这个系列好像跟红队没啥关系&#xff0c;前几期确实没啥关系&#xff0c;因为…...

二、Redis 安装与基本配置:全平台安装指南 服务器配置详解

Redis 安装与基本配置:全平台安装指南 & 服务器配置详解 Redis 作为高性能的内存数据库,其安装和配置是使用 Redis 的第一步。本篇文章将全面介绍 Redis 的安装方式,覆盖 Windows、Linux、Docker 环境,并详细讲解 Redis 的基础配置,包括 持久化、日志、端口设置等。此…...

halcon学习笔记1

环境的搭建就不说了&#xff0c;主要是作者在入职后的实际学习与实践。 打开应用程序 这里作者的个人理解是1号区域主要是可以观察到读取的图像以及后续对图像进行何种操作&#xff0c;2的算子类似于Opencv中的API&#xff0c;可以在上面进行参数的调整&#xff0c;例如read_I…...

解决Docker拉取镜像超时错误,docker: Error response from daemon:

当使用docker pull或docker run时遇到net/http: request canceled while waiting for connection的报错&#xff0c;说明Docker客户端在访问Docker Hub时出现网络连接问题。可以不用挂加速器也能解决&#xff0c;linux不好用clash。以下是经过验证的方法&#xff08;感谢轩辕镜…...

Masscan下载Linux安装

masscan 是一款高速的端口扫描工具&#xff0c;能够在极短的时间内扫描大量IP地址和端口。以下是关于如何在Linux系统上下载并安装 masscan 的详细步骤。 ### 通过包管理器安装 对于一些Linux发行版&#xff0c;你可以直接使用系统的包管理器来安装 masscan。例如&#xff0c…...

js的简单介绍

一.javascript&#xff08;是什么&#xff09; 是一种运行在客户端(浏览器)的编程语言&#xff0c;实现人机交互效果 作用 网页特效&#xff08;监听客户的一些行为让网页做出对应的反馈&#xff09;表单验证(针对表格数据的合法性进行判断)数据交互(获取后台的数据&#xf…...

神经网络 - 激活函数(Swish函数、GELU函数)

一、Swish 函数 Swish 函数是一种较新的激活函数&#xff0c;由 Ramachandran 等人在 2017 年提出&#xff0c;其数学表达式通常为 其中 σ(x) 是 Sigmoid 函数&#xff08;Logistic 函数&#xff09;。 如何理解 Swish 函数 自门控特性 Swish 函数可以看作是对输入 x 进行“…...

关于后端使用Boolean或boolean时前端收到的参数的区别

当后端使用的是Boolean时&#xff0c;调用的方法是setIsLoginUser&#xff0c;前端收到的参数的参数名是isLoginUser 而当后端使用的是boolean时&#xff0c;调用的方法是setLoginUser&#xff0c;前端收到的参数的参数名是loginUser 封装类和基本数据类型在使用时需要注意这…...

笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集

学习资料&#xff1a;代码随想录 这一块儿学得挺痛苦 注&#xff1a;文中含大模型生成内容 动态规划&#xff1a;01背包理论基础 卡码网第46题 思路&#xff1a;五部曲 定义&#xff1a;dp[i][j]为第i个物品背包容量为j&#xff0c;能装下的最大价值 递推公式&#xff1…...

安装 Windows Docker Desktop - WSL问题

一、关联文章: 1、Docker Desktop 安装使用教程 2、家庭版 Windows 安装 Docker 没有 Hyper-V 问题 3、打开 Windows Docker Desktop 出现 Docker Engine Stopped 问题 二、问题解析 打开 Docker Desktop 出现问题,如下: Docker Desktop - WSL update failed An error o…...

Spring MVC 返回数据

目录 1、什么是 SpringMVC2、返回数据2.1、返回 JSON 对象2.2、请求转发2.3、请求重定向2.4、自定义返回的内容 1、什么是 SpringMVC 1、Tomcat 和 Servlet 分别是什么&#xff1f;有什么关系&#xff1f; Servlet 是 java 官方定义的 web 开发的标准规范&#xff1b;Tomcat 是…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...