当前位置: 首页 > news >正文

三维重建(十五)——多尺度(coarse-to-fine)

文章目录

  • 一、多尺度与图像金字塔:从全局结构到局部细节
  • 二、特征提取与匹配
    • 2.1 从数据采集的角度
    • 2.2 从数据增强的角度
    • 2.3 从特征提取的方式
  • 三、以多尺度的方式使用特征
    • 3.1 特征提取与匹配
      • 3.1.1 多尺度特征检测
      • 3.1.2 金字塔匹配
    • 3.2 深度估计与立体匹配
      • 3.2.1 多尺度立体匹配
      • 3.2.2 金字塔方法
  • 四、在三维模型上进行多尺度
  • 五、多尺度优化策略
    • 5.1 多尺度优化
    • 5.2 多尺度数据融合
    • 5.3 不同尺度的设定
  • 六、根据语义划分尺度
    • 6.1 核心思想
    • 6.2 语义信息的引入
    • 6.2 多尺度处理
  • 七、实验步骤
    • 7.1 数据获取与预处理
    • 7.2 语义分割
    • 7.3 尺度分配策略
    • 7.4 多尺度特征提取与融合
    • 7.5 三维重建与优化
  • 八、论文
    • 8.1 Deformable NeRF using Recursively Subdivided Tetrahedra
    • 8.2 City-on-Web: Real-time Neural Rendering of Large-scale Scenes on the Web
    • 8.3 Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering
    • 8.4 MonoSDF: Exploring Monocular Geometric Cuesfor Neural lmplicit Surface Reconstruction
    • 8.5 Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
    • 8.6 PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization
  • 九、其他
    • 9.1 shortcut
    • 9.2 超分
  • 参考文章

多尺度是一种策略、技巧;而不是思想,已经算是基础操作了

一、多尺度与图像金字塔:从全局结构到局部细节

在这里插入图片描述
图像金字塔:逐层下采样,或者卷积。到高维这里,可能就是黄色的东西,当然,可能中间会加入shortcut,把前面的东西加到后面去。
VIT就是算一个像素之间的注意力;
整体的核心就是,从不同的分辨率去感知这个图像,会有不同的效果。计算量的权衡问题;比如输入是个高分辨率的图片,比如做三维重建,可能就会对于显存有很大的压力的存在,所以可能需要进行下采样这个情况。
还有就是切出一小块区域,有点是局部的细节是有了,但是对于整体式没法感知的。
还有就是coarse to fine的思想(对于特征提取和重建)就是一开始是对非常分辨率特别低的图片进行提取或者重建(当然,此时的效果并不好),之后再对前一次的图片的信息,进行细化,逐步精确。
优势是可以平衡显存和计算量的问题,不用一开始就把显存拉的很高。可以在一定程度上增加模型的鲁棒性。如果一开始

相关文章:

三维重建(十五)——多尺度(coarse-to-fine)

文章目录 一、多尺度与图像金字塔:从全局结构到局部细节二、特征提取与匹配2.1 从数据采集的角度2.2 从数据增强的角度2.3 从特征提取的方式三、以多尺度的方式使用特征3.1 特征提取与匹配3.1.1 多尺度特征检测3.1.2 金字塔匹配3.2 深度估计与立体匹配3.2.1 多尺度立体匹配3.2…...

SparkStreaming之04:调优

SparkStreaming调优 一 、要点 4.1 SparkStreaming运行原理 深入理解 4.2 调优策略 4.2.1 调整BlockReceiver的数量 案例演示: object MultiReceiverNetworkWordCount {def main(args: Array[String]) {val sparkConf new SparkConf().setAppName("Networ…...

勿以危小而为之勿以避率而不为

《故事汇之:所见/所闻/所历/所想》:《公园散步与小雨遇记》(二) 就差一点到山顶了,路上碰到一阿姨,她说等会儿要下大雨了,让我不要往上走了,我犹豫了一会儿,还是听劝地返…...

JavaWeb后端基础(4)

这一篇就开始是做一个项目了,在项目里学习,我主要记录在学习过程中遇到的问题,以及一些知识点 Restful风格 一种软件架构风格 在REST风格的URL中,通过四种请求方式,来操作数据的增删改查。 GET : 查询 …...

SpringBoot调用DeepSeek

引入依赖 <dependency><groupId>io.github.pig-mesh.ai</groupId><artifactId>deepseek-spring-boot-starter</artifactId><version>1.4.5</version> </dependency>配置 deepseek:api-key: sk-******base-url: https://api.…...

记录一下本地部署Dify的坑

1. 截止2025-3-4为止&#xff0c;请注意&#xff0c;不要直接拉Dify的1.0.0版本。请先试用0.15.3版本。1.0.0有一个bug需要解决。[PANIC]failed to init dify plugin db: failed to connect to hostdb userpostgres databasepostgres Issue #14707 langgenius/dify GitHub …...

LC109. 有序链表转换平衡二叉搜索树

LC109. 有序链表转换平衡二叉搜索树 题目要求(一)快慢指针1. 理解问题2. 解决思路3. 具体步骤4. 代码实现5. 复杂度分析6. 示例解释7. 总结 LC109. 有序链表转换平衡二叉搜索树 题目要求 (一)快慢指针 要将一个按升序排列的单链表转换为平衡的二叉搜索树&#xff08;BST&…...

Hutool一个类型转换工具类 `Convert`,

Hutool 是一个非常实用的Java工具库&#xff0c;旨在简化Java开发中的常见任务。它包含了一个类型转换工具类 Convert&#xff0c;可以帮助开发者轻松地进行各种类型之间的转换。以下是一些使用 Convert 类进行类型转换的例子&#xff1a; 基本类型转换 假设你需要将一个字符…...

基于eRDMA实测DeepSeek开源的3FS

DeepSeek昨天开源了3FS分布式文件系统, 通过180个存储节点提供了 6.6TiB/s的存储性能, 全面支持大模型的训练和推理的KVCache转存以及向量数据库等能力, 每个客户端节点支持40GB/s峰值吞吐用于KVCache查找. 发布后, 我们在阿里云ECS上进行了快速的复现, 并进行了性能测试, ECS…...

【Linux篇】第一个系统程序 - 进度条

文章目录 1.回车与换行2.行缓冲区3.倒计时程序4.进度条 1.回车与换行 回车的概念: 回到当前行的最开始 \r换行的概念: 换到当前行的下一行\n 2.行缓冲区 当我们运行下面这段程序时&#xff0c;我们会发现屏幕上首先会打印出hello world!,再过两秒后程序结束。 当我们把\n去掉…...

VLM-E2E:通过多模态驾驶员注意融合增强端到端自动驾驶

25年2月来自香港科大广州分校、理想汽车和厦门大学的论文“VLM-E2E: Enhancing End-to-End Autonomous Driving with Multimodal Driver Attention Fusion”。 人类驾驶员能够利用丰富的注意语义&#xff0c;熟练地应对复杂场景&#xff0c;但当前的自动驾驶系统难以复制这种能…...

如何将飞书多维表格与DeepSeek R1结合使用:效率提升的完美搭档

将飞书的多维表格与DeepSeek R1结合使用&#xff0c;就像为你的数据管理和分析之旅装上一台涡轮增压器。两者的合作&#xff0c;不仅仅在速度上让人耳目一新&#xff0c;更是将智能化分析带入了日常的工作场景。以下是它们如何相辅相成并改变我们工作方式的一些分享。 --- 在…...

Kali CentOs 7代理

工具v2↓ kali_IP段v2端口例子<1> kali_IP段v2端口例子<2> CentOs 7 //编辑配置文件 vi /etc/profile//在该配置文件的最后添加代理配置 export http_proxyhttp://ip:port //代理服务器ip地址和端口号 export https_proxyhttp://ip:port //代理服务器ip地址和…...

Zookeeper 的核心引擎:深入解析 ZAB 协议

#作者&#xff1a;张桐瑞 文章目录 前言ZAB 协议算法崩溃恢复选票结构选票筛选消息广播 前言 ZooKeeper 最核心的作用就是保证分布式系统的数据一致性&#xff0c;而无论是处理来自客户端的会话请求时&#xff0c;还是集群 Leader 节点发生重新选举时&#xff0c;都会产生数据…...

L3-001 凑零钱

L3-001 凑零钱 - 团体程序设计天梯赛-练习集 n, m map(int, input().split()) a list(map(int, input().split())) a.sort() f [[] for _ in range(m 1)] f[0] [0] for i in a:for j in range(m, i - 1, -1):if f[j - i]:if not f[j] or f[j] > f[j - i] [i]:f[j] f…...

命名管道(用命名管道模拟server和client之间的通信)

目录 命名管道创建命名管道使用命令行创建命名管道&#xff08;FIFO&#xff09;在程序中创建 命名管道的打开规则用命名管道实现server和client通信 命名管道 bash进程并不会给我们写的两个不同的程序创建通信的管道&#xff0c;即使这两个进程看起来好像都是bash的子进程&am…...

【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)

&#x1f4da; Pandas 系列文章导航 入门篇 &#x1f331;进阶篇 &#x1f680;终极篇 &#x1f30c; &#x1f4cc; 一、引言 在大数据与 AI 驱动的时代&#xff0c;数据预处理和分析是深度学习与机器学习的基石。Pandas 作为 Python 生态中最强大的数据处理库&#xff0c;以…...

关于opencv中solvepnp中UPNP与DLS与EPNP的参数

The methods SOLVEPNP_DLS and SOLVEPNP_UPNP cannot be used as the current implementations are unstable and sometimes give completely wrong results. If you pass one of these two flags, SOLVEPNP_EPNP method will be used instead.、 由于当前的实现不稳定&#x…...

金融项目实战

测试流程 测试流程 功能测试流程 功能测试流程 需求评审制定测试计划编写测试用例和评审用例执行缺陷管理测试报告 接口测试流程 接口测试流程 需求评审制定测试计划分析api文档编写测试用例搭建测试环境编写脚本执行脚本缺陷管理测试报告 测试步骤 测试步骤 需求评审 需求评…...

大模型小白入门

【课前篇】大模型从0到1指南 【基础篇】大模型的演变与概念 大模型的演变 人工智能&#xff1a;人工智能是一个广泛涉及计算机科学、数据分析、统计学、机器工程、语言学、神 经科学、哲学和心理学等多个学科的领域。 机器学习&#xff1a;机器学习可以分为监督学习&…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...