【算法方法总结·三】滑动窗口的一些技巧和注意事项
【算法方法总结·三】滑动窗口的一些技巧和注意事项
- 【算法方法总结·一】二分法的一些技巧和注意事项
- 【算法方法总结·二】双指针的一些技巧和注意事项
- 【算法方法总结·三】滑动窗口的一些技巧和注意事项
【滑动窗口】
数组的和 随着 右边指针 移动一定是 非递减 的,就是 单调,不能包含负数
- 暴力解法 时间复杂度:
O(n^2)
- 滑动窗口 时间复杂度:
O(n)
- 数组不是单调的话,不要用 滑动窗口,考虑用 前缀和(前缀和很简单,就放此章一块讲了)
- 所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果,将
O(n^2)
的暴力解法降为O(n)
- 使用了双指针机制,
left
和right
指针维护窗口边界,初始均为 0,外层循环用right
扩大窗口,内层循环用left
缩小窗口
滑动窗口的使用条件
数组的和 随着 右边指针 移动一定是 非递减 的,就是 单调
- 数据连续性:需要 数组单调 / 字符串的连续子序列问题。
- 存在重复计算:暴力解法中存在冗余计算,窗口滑动可复用部分结果。
- 窗口状态可维护:窗口内的状态(如字符频率、和)可通过指针移动快速更新。
- 时间复杂度优化需求:通常将时间复杂度从
O(n²)
优化至O(n)
。
实现滑动窗口,应确定三点:
- (1)窗口内 是什么?
- (2)如何 移动 窗口的 起始位置?
- (3)如何 移动 窗口的 结束位置?
滑动窗口模板
//外层循环扩展右边界,内层循环扩展左边界
int l = 0;
for (int r = 0 ; r < n ; r++) {//当前考虑的元素while (l <= r && check()) {//区间[left,right]不符合题意//扩展左边界}//区间[left,right]符合题意,统计相关信息
}
相关力扣题
- 相关解法见【算法题解答·三】滑动窗口
3.无重复字符的最长子串
438.找到字符串中所有字母异位词
209.长度最小的子数组
【前缀和】
前缀和 的思想是 重复利用 计算过的 子数组之和,从而降低区间查询需要累加计算的次数
【滑动窗口】和【前缀和】的选择
特性
维度 | 滑动窗口 | 前缀和 |
---|---|---|
核心机制 | 双指针 动态调整 窗口边界 | 预处理 数组的累积和 |
数据特性 | 处理 连续子序列 问题 | 快速计算 任意区间和 |
操作方向 | 单向滑动(通常右指针主导) | 静态存储,支持 任意区间 查询 |
选择策略
-
优先用滑动窗口:
– 需要处理连续子序列的最值问题
– 数据满足单向滑动条件(如均为正数) -
优先用前缀和:
– 需要快速计算区间和(尤其是多次查询)
– 数据包含负数或需要统计特定区间性质(如奇偶性)
相关文章:
【算法方法总结·三】滑动窗口的一些技巧和注意事项
【算法方法总结三】滑动窗口的一些技巧和注意事项 【算法方法总结一】二分法的一些技巧和注意事项【算法方法总结二】双指针的一些技巧和注意事项【算法方法总结三】滑动窗口的一些技巧和注意事项 【滑动窗口】 数组的和 随着 右边指针 移动一定是 非递减 的,就是 …...

IO的概念和标准IO函数
作业: 1.使用标准IO函数,实现文件的拷贝 #include <stdio.h>int main(int argc, char *argv[]) {// 检查是否提供了源文件和目标文件if (argc ! 3) {printf("Usage: %s <source_file> <destination_file>\n", argv[0]);re…...

tauri2+typescript+vue+vite+leaflet等的简单联合使用(一)
项目目标 主要的目的是学习tauri。 流程 1、搭建项目 2、简单的在项目使用leaflet 3、打包 准备项目 环境准备 废话不多说,直接开始 需要有准备能运行Rust的环境和Node,对于Rust可以参考下面这位大佬的文章,Node不必细说。 Rust 和…...
【流程图】在 .NET (WPF 或 WinForms) 中实现流程图中的连线算法
在 .NET (WPF 或 WinForms) 中实现流程图中的连线算法,通常涉及 图形绘制 和 路径计算。常见的连线方式包括 直线、折线 和 贝塞尔曲线。以下是几种方法的介绍和示例代码。 1. 直线连接(最简单) 适用场景: 两个节点之间没有障碍…...

IDEA集成DeepSeek,通过离线安装解决无法安装Proxy AI插件问题
文章目录 引言一、安装Proxy AI1.1 在线安装Proxy AI1.2 离线安装Proxy AI 二、Proxy AI中配置DeepSeek2.1 配置本地部署的DeepSeek(Ollama方式)2.2 通过第三方服务商提供的API进行配置 三、效果测试 引言 许多开发者尝试通过安装Proxy AI等插件将AI能力…...
【流行病学】Melodi-Presto因果关联工具
title: “[流行病学] Melodi Presto因果关联工具” date: 2022-12-08 lastmod: 2022-12-08 draft: false tags: [“流行病学”,“因果关联工具”] toc: true autoCollapseToc: true 阅读介绍 Melodi-Presto: A fast and agile tool to explore semantic triples derived from …...

详细分析KeepAlive的基本知识 并缓存路由(附Demo)
目录 前言1. 基本知识2. Demo2.1 基本2.2 拓展2.3 终极 3. 实战 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本知识推荐阅读:KeepAlive知识点 从实战中学习,源自实战中vue路由的…...

【Go】Go viper 配置模块
1. 配置相关概念 在项目开发过程中,一旦涉及到与第三方中间件打交道就不可避免的需要填写一些配置信息,例如 MySQL 的连接信息、Redis 的连接信息。如果这些配置都采用硬编码的方式无疑是一种不优雅的做法,有以下缺陷: 不同环境…...

zabbix“专家坐诊”第277期问答
在线答疑:乐维社区 问题一 Q:这个怎么解决呢? A:缺少这个依赖。 Q:就一直装不上。 A:装 zabbix-agent2-7.0.0-releasel.el7.x86 64 需要前面提示的那个依赖才可以装。 问题二 Q:大佬,如果agen…...
大模型工程师学习日记(十一):FAISS 高效相似度搜索和密集向量聚类的库
Facebook AI Similarity Search (Faiss /Fez/) 是一个用于高效相似度搜索和密集向量聚类的库。它包含了在任意大小的向量集合中进行搜索的算法,甚至可以处理可能无法完全放入内存的向量集合。它还包含用于评估和参数调整的支持代码。 Faiss 官方文档:We…...
python学习第三天
条件判断 条件判断使用if、elif和else关键字。它们用于根据条件执行不同的代码块。 # 条件判断 age 18 if age < 18:print("你还是个孩子!") elif age 18:print("永远十八岁!") else:print("你还年轻!")…...
深入解析 Svelte:下一代前端框架的革命
深入解析 Svelte:下一代前端框架的革命 1. Svelte 简介 Svelte 是一款前端框架,与 React、Vue 等传统框架不同,它采用 编译时(Compile-time) 方式来优化前端应用。它不像 React 或 Vue 依赖虚拟 DOM,而是…...

C++20 中位移位运算符的统一行为:深入解析与实践指南
文章目录 1. 位移位运算符的基础1.1 左移运算符(<<)1.2 右移运算符(>>) 2. C20 对位移位运算符的统一2.1 移位数量超出操作数位宽2.2 负数移位 3. 实践中的注意事项4. 示例代码5. 总结 在 C 的发展历程中,…...

Linux——基本指令
我们今天学习Linux最基础的指令 ls 指令 语法: ls [选项] [⽬录或⽂件] 功能:对于⽬录,该命令列出该⽬录下的所有⼦⽬录与⽂件。对于⽂件,将列出⽂件名以及其他信 息。 命令中的选项,一次可以传递多个 ,…...
MySql面试总结(二)
WHERE 子句优化 截至2024年7月,MySQL最新稳定版本是8.2,并不存在MySQL 8.4 。下面从常见的几个方面为你介绍 MySQL 8.x 中 WHERE 子句的优化方法: 1. 确保使用索引 原理:索引可以加快数据的查找速度,当 WHERE 子句中的条件列有索引时,MySQL 可以直接定位到符合条件的数…...

Pytorch中的主要函数
目录 一、torch.manual_seed(seed)二、torch.cuda.manual_seed(seed)三、torch.rand(*size, outNone, dtypeNone, layouttorch.strided, deviceNone, requires_gradFalse)四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧五、torch.version.cuda;torch.bac…...
Java实现大数据量导出报表
一、实现方式 在Java中,导出数据到Excel有多种方式,每种方式都有其优缺点,适用于不同的场景。以下是常见的几种方式及其特点: 1.1 Apache POI Apache POI 是 Java 中最流行的库,支持读写 Excel 文件(包括…...
大语言模型 智能助手——既能生成自然语言回复,又能在必要时调用外部工具获取实时数据
示例代码: import json from langgraph.graph import Graph, END,StateGraph from langchain_core.utils.function_calling import convert_to_openai_function from langchain_community.tools.openweathermap import OpenWeatherMapQueryRun from langchain_core…...

PyTorch 系统教程:理解机器学习数据分割
数据分割是机器学习中的一个基本概念,它直接影响模型的性能和泛化。在本文中,我们将深入研究为什么数据分割在机器学习中很重要,并演示如何使用PyTorch有效地实现它。 理解数据分割 数据分割是将数据集划分为单独的组以进行训练、验证和测试…...
分水岭算法(Watershed Algorithm)教程:硬币分割实例
import cv2 import numpy as np# 1. 图像预处理 img cv2.imread("./water/water_coins.jpeg") gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV cv2.THRESH_OTSU) kernel np.ones((3, 3), np.int8)…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...