当前位置: 首页 > news >正文

通俗易懂的分类算法之决策树详解

通俗易懂的分类算法之决策树详解


1. 什么是决策树?

决策树是一种像树一样的结构,用来帮助我们对数据进行分类或预测。它的每个节点代表一个问题或判断条件,每个分支代表一个可能的答案,最后的叶子节点就是最终的分类结果。

举个例子:

  • 假设你要判断一个水果是苹果还是香蕉,你可以问一些问题:
    1. 它是红色的吗?
      • 如果是 → 可能是苹果。
      • 如果不是 → 继续问下一个问题。
    2. 它是长条形的吗?
      • 如果是 → 可能是香蕉。
      • 如果不是 → 可能是其他水果。

这个过程就像一棵树,从根节点开始,一步步分叉,最后到达叶子节点(结果)。


2. 决策树的核心思想

决策树的核心是通过 提问 来一步步缩小范围,最终找到答案。它的目标是:

  • 问题越简单越好:每次提问都能最大程度地减少不确定性。
  • 路径越短越好:用最少的问题得到最终的答案。

3. 决策树的关键概念

(1) 节点(Node)
  • 根节点:树的起点,包含所有数据。
  • 内部节点:中间的判断条件(比如“它是红色的吗?”)。
  • 叶子节点:最终的分类结果(比如“苹果”或“香蕉”)。
(2) 分支(Branch)
  • 每个问题的可能答案(比如“是”或“不是”)。
(3) 分裂(Split)
  • 根据某个条件将数据分成更小的子集(比如把红色水果和非红色水果分开)。
(4) 纯度(Purity)
  • 衡量一个节点中的数据是否属于同一类别。纯度越高,说明分类效果越好。

4. 如何构建决策树?

构建决策树的过程就是不断选择最好的问题来分裂数据,直到每个叶子节点都足够“纯”。具体步骤如下:

(1) 选择最佳特征
  • 从所有特征中选择一个最能区分数据的特征(比如“颜色”或“形状”)。
  • 常用的选择标准:
    • 信息增益(Information Gain):选择能带来最大信息增益的特征。
    • 基尼不纯度(Gini Impurity):选择能最大程度降低不纯度的特征。
(2) 分裂数据
  • 根据选择的特征将数据分成多个子集(比如“红色水果”和“非红色水果”)。
(3) 递归构建子树
  • 对每个子集重复上述过程,直到满足停止条件(比如所有数据都属于同一类别,或者树的深度达到预设值)。
(4) 生成叶子节点
  • 当无法继续分裂时,生成叶子节点并给出最终的分类结果。

5. 举个例子

假设我们有以下数据,用来判断一个人是否会买电脑:

年龄收入学生信用评级买电脑
青年一般
青年
中年一般
老年一般
老年一般
老年
构建决策树的过程:
  1. 选择最佳特征
    • 通过计算发现,“学生”这个特征的信息增益最大,所以先根据“学生”分裂数据。
  2. 分裂数据
    • 将数据分为“学生=是”和“学生=否”两组。
  3. 递归构建子树
    • 对“学生=是”组,发现所有人都买电脑,所以生成叶子节点“买电脑=是”。
    • 对“学生=否”组,继续选择最佳特征(比如“年龄”),并重复上述过程。
  4. 生成最终的决策树
    • 最终生成的决策树可以用来预测新数据是否会买电脑。

6. 决策树的优缺点

优点:
  • 易于理解和解释:决策树像流程图一样直观,非专业人士也能看懂。
  • 适合处理类别和数值数据:可以同时处理不同类型的数据。
  • 不需要数据标准化:对数据的分布没有严格要求。
缺点:
  • 容易过拟合:如果树太复杂,可能会记住训练数据的噪声,导致在新数据上表现差。
  • 对数据变化敏感:数据的小变化可能导致树的结构发生较大变化。

7. 如何避免过拟合?

  • 剪枝(Pruning):去掉一些不重要的分支,简化树的结构。
  • 限制树的深度:设置最大深度,防止树过于复杂。
  • 设置最小样本数:每个节点至少需要一定数量的样本才能继续分裂。

8. 总结

决策树是一种简单但强大的分类算法,通过不断提问来缩小范围,最终得到分类结果。它的核心是选择最佳特征来分裂数据,直到每个叶子节点都足够“纯”。

希望这个通俗易懂的解释能帮你理解决策树!如果还有问题,欢迎随时提问! 😊

相关文章:

通俗易懂的分类算法之决策树详解

通俗易懂的分类算法之决策树详解 1. 什么是决策树? 决策树是一种像树一样的结构,用来帮助我们对数据进行分类或预测。它的每个节点代表一个问题或判断条件,每个分支代表一个可能的答案,最后的叶子节点就是最终的分类结果。 举个…...

【OpenCV C++】以时间命名存图,自动检查存储目录,若不存在自动创建, 按下空格、回车、Q、S自动存图

文章目录 // 保存图像的函数 void saveImage(const cv::Mat& frame) {// 生成唯一文件名auto now = std::chrono::system_clock::...

post get 给后端传参数

post 方式一 : data: params 作为请求体(Request Body)传递: 你已经展示了这种方式,通过data字段直接传递一个对象或数组。这种方式通常用于传递复杂的数据结构。dowmfrom: function (params) { return request({ u…...

数据仓库的特点

数据仓库的主要特点可以概括为:面向主题、集成性、非易失性、时变性、高性能和可扩展性、支持复杂查询和分析、分层架构以及数据质量管理。 1. 面向主题(Subject-Oriented) 数据仓库是面向主题的,而不是面向事务的。这意味着数据…...

任务9:交换机基础及配置

CSDN 原创主页:不羁https://blog.csdn.net/2303_76492156?typeblog 一、交换机基础 交换机的概念:交换机是一种网络设备,用于连接多台计算机或网络设备,实现数据包在局域网内的快速交换。交换机基于MAC地址来转发数据包&#x…...

ArcGIS操作:07 绘制矢量shp面

1、点击目录 2、右侧显示目录 3、选择要存储的文件夹,新建shp 4、定义名称、要素类型、坐标系 5、点击开始编辑 6、点击创建要素 7、右侧选择图层、创建面 8、开始绘制,双击任意位置结束绘制...

【AI深度学习基础】NumPy完全指南终极篇:核心功能与工程实践(含完整代码)

NumPy系列文章 入门篇进阶篇终极篇 一、引言 在完成NumPy入门篇的基础认知与进阶篇的特性探索后,我们终于迎来这场终极技术深潜。本文不再停留于API使用层面,而是直指NumPy的架构内核与高性能工程实践的本质矛盾。作为Python科学计算领域的基石&#…...

Golang语法特性总结

1.认识Golang代码特性 package main //1.包含main函数的文件就是一个main包--当前程序的包名// import "fmt" // import "time" import("fmt""time" )//3.同时包含多个包 4.强制代码风格:函数的 { 一定和函数名在同一行,否…...

Java并发编程利器CyclicBarrier:从使用到源码深度解析,掌握多线程同步的艺术

引言 在多线程编程中,你是否遇到过这样的需求? 多线程分阶段处理数据,每个阶段完成后等待其他线程 并行计算任务需要多次同步汇总结果 模拟高并发场景下多个线程同时触发操作 CyclicBarrier(循环屏障)正是解决这类问题的神器!与CountDownLatch不同,它支持重复使用和自定…...

1.从0搭建前端Vue项目工程

我们通过vue官方提供的脚手架Vue-cli来快速生成一个Vue的项目模板。 **注意:**需要先安装NodeJS,然后才能安装Vue-cli。 环境准备好了,接下来我们需要通过Vue-cli创建一个vue项目,然后再学习一下vue项目的目录结构。Vue-cli提供了…...

3D Web轻量化引擎HOOPS Communicator的核心优势解析:高性能可视化与灵活部署!

在当今数字化时代,工业领域的工程应用不断向基于Web的方向发展,而HOOPS Web平台作为一款专为构建此类工程应用程序打造的软件开发套件集,正发挥着日益重要的作用,成为构建强大工程应用的基石。 一、HOOPS Web平台概述 HOOPS Web…...

DeepSeek集成到VScode工具,让编程更高效

DeepSeek与VScode的强强联合,为编程效率树立了新标杆。 DeepSeek,一款卓越的代码搜索引擎,以其精准的索引和高速的检索能力,助力开发者在浩瀚的代码海洋中迅速定位关键信息。 集成至VScode后,开发者无需离开熟悉的编辑…...

Excel-to-JSON v2.0.0发布,可以在Excel内部,把Excel表格转换成JSON,嵌套的JSON也能转

本文是Excel-to-JSON插件的官方文档 https://excel-to-json.wtsolutions.cn 简化浓缩翻译的中文版,仅供参考。详细的还请查看官方文档。 在数据处理和交换的过程中,将Excel文件转换为JSON格式是一项常见需求。Excel-to-JSON作为一款Microsoft Excel插件…...

深度探索:美团开源DeepSeek R1 INT8量化技术的性能革命

摘要 美团搜索推荐机器学习团队近日发布了一项重要开源成果——DeepSeek R1的INT8无损满血版。该模型部署在A100硬件上,采用INT8量化技术,在保持BF16精度的同时,实现了高达50%的吞吐量提升。这一突破使得老旧显卡无需更换硬件即可获得显著性能…...

gn学习存档

以下答案均由deepseek提供,仅作学习存档。 1. 举例说明action和action_foreach区别 场景设定 假设需要处理一组文件: 输入文件:src/data/file1.txt, src/data/file2.txt, src/data/file3.txt处理逻辑:将每个 .txt 文件转换为 …...

扩展Windows磁盘的技术型教学文章

在Windows操作系统中,扩展磁盘是一项常见的任务,特别是当您需要增加存储空间以容纳更多数据时。以下是一份技术性的教学文章,介绍如何在Windows系统中扩展磁盘: #### 步骤一:打开磁盘管理器 1. 按下 Win X 组合键&a…...

【每日学点HarmonyOS Next知识】web滚动、事件回调、selectable属性、监听H5内部router、Grid嵌套时高度设置

【每日学点HarmonyOS Next知识】web滚动、事件回调、selectable属性、监听H5内部router、Grid嵌套时高度设置 1、HarmonyOS WebView加载url无法滚动? scroll 里面嵌套webView,demo参考: // xxx.ets import web_webview from ohos.web.webv…...

(十 四)趣学设计模式 之 策略模式!

目录 一、 啥是策略模式?二、 为什么要用策略模式?三、 策略模式的实现方式四、 策略模式的优缺点五、 策略模式的应用场景六、 总结 🌟我的其他文章也讲解的比较有趣😁,如果喜欢博主的讲解方式,可以多多支…...

React:Router路由

ReactRouter引入 在index.js里编辑,创建路由,绑定路由 import React from react; import ReactDOM from react-dom/client; import ./index.css; import reportWebVitals from ./reportWebVitals; import { createBrowserRouter, RouterProvider } from…...

解决docker认证问题 failed to authorize: failed to fetch oauth token

报错信息[bash1]解决方案 全局代理打开“buildkit”: false ,见[图1] [bash1] >docker build -t ffpg . [] Building 71.8s (3/3) FINISHED docker:desktop-linux> [internal] load bui…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...