当前位置: 首页 > news >正文

通往 AI 之路:Python 机器学习入门-线性代数

2.1 线性代数(机器学习的核心)

线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。


2.1.1 标量、向量、矩阵

1. 标量(Scalar)

标量是一个单独的数,例如:

a = 5

在 Python 中:

a = 5  # 标量

2. 向量(Vector)

向量是由多个数值组成的一维数组,例如:

v = [2, 3, 5]

Python 实现:

import numpy as np
v = np.array([2, 3, 5])  # 一维数组表示向量
print(v)

3. 矩阵(Matrix)

矩阵是一个二维数组,例如:

A = [[1, 2],[3, 4]]

Python 实现:

A = np.array([[1, 2], [3, 4]])  # 二维数组表示矩阵
print(A)

2.1.2 矩阵运算

1. 矩阵加法

两个相同形状的矩阵可以相加:

A + B = [[1, 2],    +   [[5, 6],    =   [[6,  8],[3, 4]]         [7, 8]]         [10, 12]]

Python 计算:

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = A + B
print(C)

2. 矩阵乘法

  • 逐元素相乘(Hadamard 乘积)
A ⊙ B = [[1×5,  2×6],[3×7,  4×8]]= [[5, 12],[21, 32]]

Python 实现:

C = A * B  # 逐元素相乘
print(C)
  • 矩阵乘法(点积)
A × B = [[1×5 + 2×7,  1×6 + 2×8],[3×5 + 4×7,  3×6 + 4×8]]= [[19, 22],[43, 50]]

Python 实现:

C = np.dot(A, B)  # 矩阵乘法
print(C)

3. 矩阵转置

矩阵转置是将行变成列:

A^T = [[1, 3],[2, 4]]

Python 计算:

A_T = A.T  # 计算转置
print(A_T)

4. 逆矩阵

如果矩阵 A 是可逆的(即 det(A) ≠ 0),那么存在一个矩阵 A^(-1) 使得:

A × A^(-1) = I  (单位矩阵)

Python 计算:

A_inv = np.linalg.inv(A)  # 计算逆矩阵
print(A_inv)

2.1.3 特征值与特征向量

特征值(Eigenvalue)和特征向量(Eigenvector)在机器学习中用于主成分分析(PCA)等算法。

1. 定义

对于矩阵 A,如果存在一个向量 v 和一个数 λ 使得:

A × v = λ × v

那么 vA 的特征向量,λ 是对应的特征值。

2. Python 计算特征值和特征向量

eigenvalues, eigenvectors = np.linalg.eig(A)
print("特征值:", eigenvalues)
print("特征向量:", eigenvectors)

2.1.4 SVD(奇异值分解)

奇异值分解(Singular Value Decomposition, SVD)是矩阵分解的一种重要方法,它可以表示为:

A = U × Σ × V^T

其中:

  • U 是左奇异向量矩阵
  • Σ 是对角矩阵,对角线上的元素称为奇异值
  • V^T 是右奇异向量矩阵的转置

Python 计算 SVD

U, S, V_T = np.linalg.svd(A)
print("U 矩阵:", U)
print("Σ 矩阵:", S)
print("V^T 矩阵:", V_T)

SVD 在降维(如 PCA)中有重要应用,后续章节将深入介绍。


总结

本章介绍了机器学习中常用的线性代数知识,包括:

  • 标量、向量、矩阵 及其表示方式
  • 矩阵运算(加法、乘法、转置、逆矩阵)
  • 特征值与特征向量(PCA 等算法的基础)
  • SVD(奇异值分解)(在数据降维中的应用)

掌握这些内容,有助于理解机器学习的数学基础!建议多实践代码,加深理解!

相关文章:

通往 AI 之路:Python 机器学习入门-线性代数

2.1 线性代数(机器学习的核心) 线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD&…...

迷你世界脚本UI五子棋小游戏

wzq_jm "7477124677881080183-22855"--界面id wzq_jmjxh "7477124677881080183-22855_"--界面加下划线 wzq_tc "7477124677881080183-22855_262"--退出按钮id wzq_hdlt1 "7477124677881080183-22855_267"--互动聊天按钮 快点吧&a…...

阿里万相,正式开源

大家好,我是小悟。 阿里万相正式开源啦。这就像是AI界突然开启了一扇通往宝藏的大门,而且还是免费向所有人敞开的那种。 你想想看,在这个科技飞速发展的时代,AI就像是拥有神奇魔法的魔法师,不断地给我们带来各种意想…...

C# 数据转换

1. 文本框读取byte,ushort格式数据 byte addr; if (byte.TryParse(textBoxAddr.Text, out addr) true) {}2. 字节数组 (byte[]) 转换为 ASCII 字符串 byte[] bytes { 72, 101, 108, 108, 111 }; // "Hello" 的 ASCII 码 string s0 Encoding.ASCII.Ge…...

学习第十一天-树

一、树的基础概念 1. 定义 树是一种非线性数据结构,由 n 个有限节点组成层次关系集合。特点: 有且仅有一个根节点其余节点分为若干互不相交的子树节点间通过父子关系连接 2. 关键术语 术语定义节点包含数据和子节点引用的单元根节点树的起始节点&#…...

网络服务之SSH协议

一.SSH基础 1.1 什么是ssh SSH(Secure Shell)协议是一种用于字符界面远程登录和数据加密传输的协议。 1.2 ssh优点 优点: 数据传输是加密的,可以防止信息泄漏 数据传输是压缩的,可以提高传输速度 注意&#xff…...

蓝桥杯 之 前缀和与查分

文章目录 题目求和棋盘挖矿 前缀和有利于快速求解 区间的和、异或值 、乘积等情况差分是前缀和的反操作 前缀和 一维前缀和: # 原始的数组num,下标从1到n n len(num) pre [0]*(n1) for i in range(n):pre[i1] pre[i] num[i] # 如果需要求解num[l] 到num[r] 的区…...

GB28181开发--ZLMediaKit‌+WVP+Jessibuca‌

一、核心组件功能 1‌、ZLMediaKit‌ 定位‌:基于 C++11 的高性能流媒体服务框架,支持 RTSP/RTMP/HLS/HTTP-FLV 等协议互转,具备低延迟(最低 100ms)、高并发(单机 10W 级连接)特性,适用于商用级流媒体服务器部署‌。 ‌特性‌:跨平台(Linux/Windows/ARM 等)、支持 …...

Ubuntu20.04 在离线机器上安装 NVIDIA Container Toolkit

步骤 1.下载4个安装包 Index of /nvidia-docker/libnvidia-container/stable/ nvidia-container-toolkit-base_1.13.5-1_amd64.deb libnvidia-container1_1.13.5-1_amd64.deb libnvidia-container-tools_1.13.5-1_amd64.deb nvidia-container-toolkit_1.13.5-1_amd64.deb 步…...

如何快速上手RabbitMQ 笔记250304

如何快速上手RabbitMQ 要快速上手 RabbitMQ,可以按照以下步骤进行,从安装到基本使用逐步掌握核心概念和操作: 1. 理解核心概念 Producer(生产者):发送消息的程序。Consumer(消费者&#xff09…...

无人机端部署 AI 模型,实现实时数据处理和决策

在无人机端部署 AI 模型,实现实时数据处理和决策,是提升无人机智能化水平的关键技术之一。通过将 AI 模型部署到无人机上,可以实现实时目标检测、路径规划、避障等功能。以下是实现这一目标的详细方案和代码示例。 一、实现方案 1. 硬件选择…...

CentOS 7中安装Dify

Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。尤其是我们本地部署DeepSeek等大模型时,会需要用到Dify来帮我们快捷的开发和应用。 大家可以参考学习它的中…...

CoDrivingLLM

CoDrivingLLM 思路 1.输入和输出 输入 算法的输入包括车辆当前时刻的状态 S t S_t St​ ,这个状态包含了车辆的位置、速度、行驶方向等信息;以及参与协同驾驶的联网自动驾驶汽车列表C,用于确定需要进行决策的车辆集合。 输出 输出为车辆…...

Centos7升级openssl和openssh最新版

1、事前准备 下载openssl3.4.1和openssh9.9p2压缩包上传到服务器 https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/portable// Release OpenSSL 3.4.1 openssl/openssl GitHub 2、查看centos7、ssh以及openssl的版本信息 # 查看CentOS系统版本信息 cat /etc/redhat-release …...

相控阵扫盲

下图展示天线增益 在仰角为0度的情况下随着方位角的变化而变化。需要注意到的是在天线视轴方向上的高增益主瓣上还有几个低增益旁瓣 阵列因子乘以新的阵元方向图会形成指向性更强的波速...

nginx 配置 301跳转

HTTP 跳转到 HTTPS 将所有 HTTP 请求(80 端口)跳转到 HTTPS(443 端口): server {listen 80;server_name example.com;# 跳转到 HTTPSreturn 301 https://$host$request_uri; }server {listen 443 ssl;server_name exa…...

开发环境搭建-03.后端环境搭建-使用Git进行版本控制

一.Git进行版本控制 我们对项目开发就会产生很多代码,我们需要有效的将这些代码管理起来,因此我们真正开发代码前需要把我们的Git环境搭建好。通过Git来管理我们项目的版本,进而实现版本控制。 首先我们使用Git创建本地仓库,然后…...

vivado 充分利用 IP 核

充分利用 IP 核 使用预先验证的 IP 核能够大幅减少设计和验证工作量,从而加速产品上市进程。如需了解更多有利用 IP 的信息,请参 阅以下资源: • 《 Vivado Design Suite 用户指南:采用 IP 进行设计》 (UG896) [ 参照 1…...

外盘农产品期货数据:历史高频分钟回测的分享下载20250305

外盘农产品期货数据:历史高频分钟回测的分享下载20250305 在国际期货市场中,历史分钟高频数据的作用不可小觑。这些数据以分钟为时间尺度,详细记录了期货合约的价格变动和交易量信息,为投资者提供了全面、深入的市场分析视角。通…...

计算机毕设-基于springboot的网上商城系统的设计与实现(附源码+lw+ppt+开题报告)

博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...

无法与IP建立连接,未能下载VSCode服务器

如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四&#xff…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...