通往 AI 之路:Python 机器学习入门-线性代数
2.1 线性代数(机器学习的核心)
线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。
2.1.1 标量、向量、矩阵
1. 标量(Scalar)
标量是一个单独的数,例如:
a = 5
在 Python 中:
a = 5 # 标量
2. 向量(Vector)
向量是由多个数值组成的一维数组,例如:
v = [2, 3, 5]
Python 实现:
import numpy as np
v = np.array([2, 3, 5]) # 一维数组表示向量
print(v)
3. 矩阵(Matrix)
矩阵是一个二维数组,例如:
A = [[1, 2],[3, 4]]
Python 实现:
A = np.array([[1, 2], [3, 4]]) # 二维数组表示矩阵
print(A)
2.1.2 矩阵运算
1. 矩阵加法
两个相同形状的矩阵可以相加:
A + B = [[1, 2], + [[5, 6], = [[6, 8],[3, 4]] [7, 8]] [10, 12]]
Python 计算:
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = A + B
print(C)
2. 矩阵乘法
- 逐元素相乘(Hadamard 乘积)
A ⊙ B = [[1×5, 2×6],[3×7, 4×8]]= [[5, 12],[21, 32]]
Python 实现:
C = A * B # 逐元素相乘
print(C)
- 矩阵乘法(点积)
A × B = [[1×5 + 2×7, 1×6 + 2×8],[3×5 + 4×7, 3×6 + 4×8]]= [[19, 22],[43, 50]]
Python 实现:
C = np.dot(A, B) # 矩阵乘法
print(C)
3. 矩阵转置
矩阵转置是将行变成列:
A^T = [[1, 3],[2, 4]]
Python 计算:
A_T = A.T # 计算转置
print(A_T)
4. 逆矩阵
如果矩阵 A 是可逆的(即 det(A) ≠ 0),那么存在一个矩阵 A^(-1) 使得:
A × A^(-1) = I (单位矩阵)
Python 计算:
A_inv = np.linalg.inv(A) # 计算逆矩阵
print(A_inv)
2.1.3 特征值与特征向量
特征值(Eigenvalue)和特征向量(Eigenvector)在机器学习中用于主成分分析(PCA)等算法。
1. 定义
对于矩阵 A,如果存在一个向量 v 和一个数 λ 使得:
A × v = λ × v
那么 v 是 A 的特征向量,λ 是对应的特征值。
2. Python 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(A)
print("特征值:", eigenvalues)
print("特征向量:", eigenvectors)
2.1.4 SVD(奇异值分解)
奇异值分解(Singular Value Decomposition, SVD)是矩阵分解的一种重要方法,它可以表示为:
A = U × Σ × V^T
其中:
U是左奇异向量矩阵Σ是对角矩阵,对角线上的元素称为奇异值V^T是右奇异向量矩阵的转置
Python 计算 SVD
U, S, V_T = np.linalg.svd(A)
print("U 矩阵:", U)
print("Σ 矩阵:", S)
print("V^T 矩阵:", V_T)
SVD 在降维(如 PCA)中有重要应用,后续章节将深入介绍。
总结
本章介绍了机器学习中常用的线性代数知识,包括:
- 标量、向量、矩阵 及其表示方式
- 矩阵运算(加法、乘法、转置、逆矩阵)
- 特征值与特征向量(PCA 等算法的基础)
- SVD(奇异值分解)(在数据降维中的应用)
掌握这些内容,有助于理解机器学习的数学基础!建议多实践代码,加深理解!
相关文章:
通往 AI 之路:Python 机器学习入门-线性代数
2.1 线性代数(机器学习的核心) 线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD&…...
迷你世界脚本UI五子棋小游戏
wzq_jm "7477124677881080183-22855"--界面id wzq_jmjxh "7477124677881080183-22855_"--界面加下划线 wzq_tc "7477124677881080183-22855_262"--退出按钮id wzq_hdlt1 "7477124677881080183-22855_267"--互动聊天按钮 快点吧&a…...
阿里万相,正式开源
大家好,我是小悟。 阿里万相正式开源啦。这就像是AI界突然开启了一扇通往宝藏的大门,而且还是免费向所有人敞开的那种。 你想想看,在这个科技飞速发展的时代,AI就像是拥有神奇魔法的魔法师,不断地给我们带来各种意想…...
C# 数据转换
1. 文本框读取byte,ushort格式数据 byte addr; if (byte.TryParse(textBoxAddr.Text, out addr) true) {}2. 字节数组 (byte[]) 转换为 ASCII 字符串 byte[] bytes { 72, 101, 108, 108, 111 }; // "Hello" 的 ASCII 码 string s0 Encoding.ASCII.Ge…...
学习第十一天-树
一、树的基础概念 1. 定义 树是一种非线性数据结构,由 n 个有限节点组成层次关系集合。特点: 有且仅有一个根节点其余节点分为若干互不相交的子树节点间通过父子关系连接 2. 关键术语 术语定义节点包含数据和子节点引用的单元根节点树的起始节点&#…...
网络服务之SSH协议
一.SSH基础 1.1 什么是ssh SSH(Secure Shell)协议是一种用于字符界面远程登录和数据加密传输的协议。 1.2 ssh优点 优点: 数据传输是加密的,可以防止信息泄漏 数据传输是压缩的,可以提高传输速度 注意ÿ…...
蓝桥杯 之 前缀和与查分
文章目录 题目求和棋盘挖矿 前缀和有利于快速求解 区间的和、异或值 、乘积等情况差分是前缀和的反操作 前缀和 一维前缀和: # 原始的数组num,下标从1到n n len(num) pre [0]*(n1) for i in range(n):pre[i1] pre[i] num[i] # 如果需要求解num[l] 到num[r] 的区…...
GB28181开发--ZLMediaKit+WVP+Jessibuca
一、核心组件功能 1、ZLMediaKit 定位:基于 C++11 的高性能流媒体服务框架,支持 RTSP/RTMP/HLS/HTTP-FLV 等协议互转,具备低延迟(最低 100ms)、高并发(单机 10W 级连接)特性,适用于商用级流媒体服务器部署。 特性:跨平台(Linux/Windows/ARM 等)、支持 …...
Ubuntu20.04 在离线机器上安装 NVIDIA Container Toolkit
步骤 1.下载4个安装包 Index of /nvidia-docker/libnvidia-container/stable/ nvidia-container-toolkit-base_1.13.5-1_amd64.deb libnvidia-container1_1.13.5-1_amd64.deb libnvidia-container-tools_1.13.5-1_amd64.deb nvidia-container-toolkit_1.13.5-1_amd64.deb 步…...
如何快速上手RabbitMQ 笔记250304
如何快速上手RabbitMQ 要快速上手 RabbitMQ,可以按照以下步骤进行,从安装到基本使用逐步掌握核心概念和操作: 1. 理解核心概念 Producer(生产者):发送消息的程序。Consumer(消费者)…...
无人机端部署 AI 模型,实现实时数据处理和决策
在无人机端部署 AI 模型,实现实时数据处理和决策,是提升无人机智能化水平的关键技术之一。通过将 AI 模型部署到无人机上,可以实现实时目标检测、路径规划、避障等功能。以下是实现这一目标的详细方案和代码示例。 一、实现方案 1. 硬件选择…...
CentOS 7中安装Dify
Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。尤其是我们本地部署DeepSeek等大模型时,会需要用到Dify来帮我们快捷的开发和应用。 大家可以参考学习它的中…...
CoDrivingLLM
CoDrivingLLM 思路 1.输入和输出 输入 算法的输入包括车辆当前时刻的状态 S t S_t St ,这个状态包含了车辆的位置、速度、行驶方向等信息;以及参与协同驾驶的联网自动驾驶汽车列表C,用于确定需要进行决策的车辆集合。 输出 输出为车辆…...
Centos7升级openssl和openssh最新版
1、事前准备 下载openssl3.4.1和openssh9.9p2压缩包上传到服务器 https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/portable// Release OpenSSL 3.4.1 openssl/openssl GitHub 2、查看centos7、ssh以及openssl的版本信息 # 查看CentOS系统版本信息 cat /etc/redhat-release …...
相控阵扫盲
下图展示天线增益 在仰角为0度的情况下随着方位角的变化而变化。需要注意到的是在天线视轴方向上的高增益主瓣上还有几个低增益旁瓣 阵列因子乘以新的阵元方向图会形成指向性更强的波速...
nginx 配置 301跳转
HTTP 跳转到 HTTPS 将所有 HTTP 请求(80 端口)跳转到 HTTPS(443 端口): server {listen 80;server_name example.com;# 跳转到 HTTPSreturn 301 https://$host$request_uri; }server {listen 443 ssl;server_name exa…...
开发环境搭建-03.后端环境搭建-使用Git进行版本控制
一.Git进行版本控制 我们对项目开发就会产生很多代码,我们需要有效的将这些代码管理起来,因此我们真正开发代码前需要把我们的Git环境搭建好。通过Git来管理我们项目的版本,进而实现版本控制。 首先我们使用Git创建本地仓库,然后…...
vivado 充分利用 IP 核
充分利用 IP 核 使用预先验证的 IP 核能够大幅减少设计和验证工作量,从而加速产品上市进程。如需了解更多有利用 IP 的信息,请参 阅以下资源: • 《 Vivado Design Suite 用户指南:采用 IP 进行设计》 (UG896) [ 参照 1…...
外盘农产品期货数据:历史高频分钟回测的分享下载20250305
外盘农产品期货数据:历史高频分钟回测的分享下载20250305 在国际期货市场中,历史分钟高频数据的作用不可小觑。这些数据以分钟为时间尺度,详细记录了期货合约的价格变动和交易量信息,为投资者提供了全面、深入的市场分析视角。通…...
计算机毕设-基于springboot的网上商城系统的设计与实现(附源码+lw+ppt+开题报告)
博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
