Nat Mach Intell | AI分子对接算法评测
《Nature Machine Intelligence》发表重磅评测,系统评估AI与物理方法在虚拟筛选(VS)中的表现,突破药物发现效率瓶颈。

核心评测体系:三大数据集
研究团队构建了三个新型测试集:
-
TrueDecoy:含147个靶点,活性分子与真实实验验证的低活性分子(活性-非活性比例1:40),模拟高挑战性筛选场景(图a,c)。
-
RandomDecoy:活性分子取自TrueDecoy,非活性分子随机选自商业库(比例1:100或1:300),贴近真实药物筛选(图b,d)。
-
MassiveDecoy:扩展至700万分子库,验证算法在大规模VS中的实用性。

AI与物理方法的对决
1. 对接准确性
-
AI工具:CarsiDock(成功率86.4%)和KarmaDock(76.2%)在RMSD <2Å时超越所有传统方法。
-
物理方法:LeDock在RMSD <1Å时准确率最高,显示局部构象优化优势。

2. 结构合理性
-
物理方法稳胜:Glide等生成复合物的分子间有效性(Intermolecular validity)达90%以上。
-
AI的短板:CarsiDock在分子间碰撞检查中合格率仅50%,FlexPose甚至低于20%。研究者指出,AI方法多关注配体构象,忽视蛋白-配体空间冲突。

3. 虚拟筛选表现
TrueDecoy测试:物理方法Glide联合RTMScore在区分微弱活性分子时最佳(EF_1%=5.69)。

RandomDecoy测试:CarsiDock全面胜出(EF_1%=43.5),显示AI在真实化学库筛选中的潜力。

技术瓶颈深度解析
1. 数据依赖性
去除PDBbind重复数据后,AI工具成功率下降30%,而物理方法稳定,提示现有AI模型泛化能力不足。

2. 后处理策略的局限性
RDKit几何优化(FF)仅提升配体内部合理性(Intramolecular validity),但恶化分子间相互作用。

构象对齐(Align)反而导致RMSD升高,削弱筛选性能。

3. 效率与精度的平衡
KarmaDock单次对接仅需0.017秒(GPU加速),适合千万级库初筛;CarsiDock精度高但耗时较长(1.7秒/分子),需级联策略提速。

未来方向与实战策略
1. 层次化筛选方案
两步走策略:先用KarmaDock初筛百万库,再以CarsiDock优化前10万分子。在八类靶点测试中,该策略显著提升活性分子召回率。

2. AI算法革新
-
将分子间几何约束(如氢键网络、疏水接触)融入神经网络架构;
-
开发统一评分框架,整合物理参数与深度学习特征。
3. 数据建设标准化
-
制定更严格的复合物合理性评价指标;
-
构建靶点依赖性更弱的广谱训练集。
主编视点
"AI对接工具的崛起并非替代传统方法,而是扩展药物发现的策略维度。此项研究揭示:
-
在初筛阶段,AI凭借速度优势可快速缩小化学空间;
-
在先导化合物优化时,物理方法对结合模式合理性的把控不可替代。
未来,嵌入物理规则的混合模型或成突破关键——既要让AI'理解'能量最小化原理,也要保留其探索未知空间的能力。"
参考资料
Gu, S., Shen, C., Zhang, X. et al. Benchmarking AI-powered docking methods from the perspective of virtual screening. Nat Mach Intell (2025).
代码链接:https://github.com/shukai1997/VSDS-VD
相关文章:
Nat Mach Intell | AI分子对接算法评测
《Nature Machine Intelligence》发表重磅评测,系统评估AI与物理方法在虚拟筛选(VS)中的表现,突破药物发现效率瓶颈。 核心评测体系:三大数据集 研究团队构建了三个新型测试集: TrueDecoy:含14…...
【自学笔记】Hadoop基础知识点总览-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Hadoop基础知识点总览1. Hadoop简介2. Hadoop生态系统3. HDFS(Hadoop Distributed File System)HDFS基本命令 4. MapReduceWordCount示例&am…...
【Linux】使用问题汇总
#1 ssh连接的时候报Key exchange failed 原因:服务端版本高,抛弃了一些不安全的交换密钥算法,且客户端版本比较旧,不支持安全性较高的密钥交换算法。 解决方案: 如果是内网应用,安全要求不这么高…...
(二 十 二)趣学设计模式 之 备忘录模式!
目录 一、 啥是备忘录模式?二、 为什么要用备忘录模式?三、 备忘录模式的实现方式四、 备忘录模式的优缺点五、 备忘录模式的应用场景六、 总结 🌟我的其他文章也讲解的比较有趣😁,如果喜欢博主的讲解方式,…...
交叉编译openssl及curl
操作环境:Ubuntu20.04 IDE工具:Clion2020.2 curl下载地址:https://curl.se/download/ openssl下载地址:https://openssl-library.org/source/old/index.html 直接交叉编译curl会报错找不到openssl,所以需要先交叉编…...
【每日八股】计算机网络篇(三):IP
目录 DNS 查询服务器的基本流程DNS 采用 TCP 还是 UDP,为什么?默认使用 UDP 的原因需要使用 TCP 的场景?总结 DNS 劫持是什么?解决办法?浏览器输入一个 URL 到显示器显示的过程?URL 解析TCP 连接HTTP 请求页…...
Gartner:数据安全平台DSP提升数据流转及使用安全
2025 年 1 月 7 日,Gartner 发布“China Context:Market Guide for Data Security Platforms”(《数据安全平台市场指南——中国篇》,以下简称指南),报告主要聚焦中国数据安全平台(Data Securit…...
从vue源码解析Vue.set()和this.$set()
前言 最近死磕了一段时间vue源码,想想觉得还是要输出点东西,我们先来从Vue提供的Vue.set()和this.$set()这两个api看看它内部是怎么实现的。 Vue.set()和this.$set()应用的场景 平时做项目的时候难免不会对 数组或者对象 进行这样的骚操作操作ÿ…...
深入浅出:UniApp 从入门到精通全指南
https://juejin.cn/post/7440119937644101684 uni-app官网 uniapp安卓离线打包流程_uniapp离线打包-CSDN博客 本文是关于 UniApp 从入门到精通的全指南,涵盖基础入门(环境搭建、创建项目、项目结构、编写运行)、核心概念与进阶知识&#x…...
DeepSeek未来发展趋势:开创智能时代的新风口
DeepSeek未来发展趋势:开创智能时代的新风口 随着人工智能(AI)、深度学习(DL)和大数据的飞速发展,众多创新型技术已经逐渐走向成熟,而DeepSeek作为这一领域的新兴力量,正逐步吸引越…...
阻塞队列的实现(线程案例)
一.什么是阻塞队列? 1.如果对于一个满的队列,还要把元素入队列,此时这个队列就会阻塞等待,一直阻塞到这个队列不满为止,从而把这个元素入队列! 2.如果对于一个空的队列,还要从队列拿出元素&…...
http status是什么?常见的http状态码指的是什么意思?
HTTP 状态码 HTTP 状态码(HTTP Status Code)是服务器在响应客户端请求时返回的一个三位数字代码,用于表示请求的处理结果。HTTP 状态码是 HTTP 协议的一部分,帮助客户端(如浏览器或应用程序)了解请求是否成…...
react组件分离,降低耦合
分离前 分离后...
【AI】AI白日梦+ChatGPT 三分钟生成爆款短视频
引言 随着人工智能(AI)技术的快速发展,AI在各个领域都展现出了强大的应用潜力。其中,自然语言处理技术的进步使得智能对话系统得以实现,而ChatGPT作为其中的代表之一,具有自动生成文本的能力,为…...
MYSQL的安装教程
mysql安装分为:普通安装和压缩包安装 压缩包安装很多会存在安装失败的情况,所以我这里就用了普通安装 一、官网下载安装包 www.mysql.com 点击DOWNLOADS: 进入社区版本下载: 点击最下面一行进行下载: 选择第二个离…...
深入解析 C# 中的泛型:概念、用法与最佳实践
C# 中的 泛型(Generics) 是一种强大的编程特性,允许开发者在不预先指定具体数据类型的情况下编写代码。通过泛型,C# 能够让我们编写更灵活、可重用、类型安全且性能优良的代码。泛型广泛应用于类、方法、接口、委托、集合等多个方…...
NUMA架构介绍
NUMA 架构详解 NUMA(Non-Uniform Memory Access,非统一内存访问) 是一种多处理器系统的内存设计架构,旨在解决多处理器系统中内存访问延迟不一致的问题。与传统的 UMA(Uniform Memory Access,统一内存访问…...
数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南
文章目录 数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南ChatGPTKimi腾讯元宝DeepSeek 数据安全VS创作自由:ChatGPT与国产AI工具隐私管理对比——论文党程序员必看的避坑指南 产品隐私设置操作路径隐私协议ChatGPT…...
python爬虫:python中使用多进程、多线程和协程对比和采集实践
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. 多进程爬虫1.1 python多进程样例1.2 实现多进程爬虫2. 多线程爬虫2.1 python多线程样例2.2 实现多线程爬虫3. 协程爬虫3.1 python协程样例3.2 实现协程爬虫在网络爬虫中,为了提高抓取效率,常常需要使用多进程、多线…...
《OpenCV》—— dlib库
文章目录 dlib库是什么?OpenCV库与dlib库对比dlib库安装dlib——人脸应用实例——人脸检测dlib——人脸应用实例——人脸关键点定位dlib——人脸应用实例——人脸轮廓绘制 dlib库是什么? OpenCV库与dlib库对比 dlib库安装 dlib——人脸应用实例——人脸检…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
