【Pandas】pandas Series swaplevel
Pandas2.2 Series
Computations descriptive stats
方法 | 描述 |
---|---|
Series.argsort([axis, kind, order, stable]) | 用于返回 Series 中元素排序后的索引位置的方法 |
Series.argmin([axis, skipna]) | 用于返回 Series 中最小值索引位置的方法 |
Series.argmax([axis, skipna]) | 用于返回 Series 中最大值索引位置的方法 |
Series.reorder_levels(order) | 用于重新排列 Series 中多层索引(MultiIndex)层级顺序的方法 |
Series.sort_values(*[, axis, ascending, …]) | 用于对 Series 中的值进行排序的方法 |
Series.sort_index(*[, axis, level, …]) | 用于根据索引对 Series 进行排序 |
Series.swaplevel([i, j, copy]) | 用于交换 MultiIndex 中的两个级别 |
pandas.Series.swaplevel
pandas.Series.swaplevel
方法用于交换 MultiIndex
中的两个级别。这对于处理具有多级索引的数据非常有用,可以方便地调整数据结构以满足不同的分析需求。
参数说明
- i:整数或字符串。指定要交换的第一个级别,可以是级别的位置(从 0 开始)或级别的名称。
- j:整数或字符串。指定要交换的第二个级别,可以是级别的位置(从 0 开始)或级别的名称。
- copy:布尔值,默认为 True。如果为 True,则返回一个新的 Series,原始 Series 不变;如果为 False,则在原 Series 上进行操作。
示例及结果
import pandas as pd# 创建一个带有 MultiIndex 的 Series
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])
s = pd.Series(range(8), index=index)print("原始 Series:")
print(s)# 使用 swaplevel 交换两个级别的索引
swapped_s = s.swaplevel('first', 'second')print("\n交换后的 Series:")
print(swapped_s)
输出结果
原始 Series:
first second
bar one 0two 1
baz one 2two 3
foo one 4two 5
qux one 6two 7
dtype: int64交换后的 Series:
second first
one bar 0
two bar 1
one baz 2
two baz 3
one foo 4
two foo 5
one qux 6
two qux 7
dtype: int64
通过上述代码和输出结果可以看到,swaplevel
方法可以有效地交换 MultiIndex
中的两个级别,并且可以通过设置不同的参数来控制是否返回新的 Series 或在原 Series 上进行操作。
注意事项
- 如果
MultiIndex
中的级别名称不是唯一的,建议使用级别位置(整数)来指定要交换的级别。 - 交换级别后,数据的顺序保持不变,仅索引级别的顺序发生变化。
相关文章:
【Pandas】pandas Series swaplevel
Pandas2.2 Series Computations descriptive stats 方法描述Series.argsort([axis, kind, order, stable])用于返回 Series 中元素排序后的索引位置的方法Series.argmin([axis, skipna])用于返回 Series 中最小值索引位置的方法Series.argmax([axis, skipna])用于返回 Series…...

esp32s3聊天机器人(二)
继续上文,硬件软件准备齐全,介绍一下主要用到的库 sherpa-onnx 开源的,语音转文本、文本转语音、说话人分类和 VAD,关键是支持C#开发 OllamaSharp 用于连接ollama,如其名C#开发 虽然离可玩还有一段距离࿰…...

pyside6学习专栏(九):在PySide6中使用PySide6.QtCharts绘制6种不同的图表的示例代码
PySide6的QtCharts类支持绘制各种型状的图表,如面积区域图、饼状图、折线图、直方图、线条曲线图、离散点图等,下面的代码是采用示例数据绘制这6种图表的示例代码,并可实现动画显示效果,实际使用时参照代码中示例数据的格式将实际数据替换即可…...

DVI分配器2进4出,2进8出,2进16出,120HZ
DVI(Digital Visual Interface)分配器GEFFEN/HDD系列是一种设备,它能够将一个DVI信号源的内容复制到多个显示设备上。根据您提供的信息,这里我们关注的是具有2个输入端口和多个(4个、8个或16个)输出端口的D…...
迷你世界脚本文字板接口:Graphics
文字板接口:Graphics 彼得兔 更新时间: 2024-08-27 11:12:18 具体函数名及描述如下: 序号 函数名 函数描述 1 makeGraphicsText(...) 创建文字板信息 2 makeflotageText(...) 创建漂浮文字信息 3 makeGraphicsProgress(...) 创建进度条信息…...

5分钟速览深度学习经典论文 —— attention is all you need
《Attention is All You Need》是一篇极其重要的论文,它提出的 Transformer 模型和自注意力机制不仅推动了 NLP 领域的发展,还对整个深度学习领域产生了深远影响。这篇论文的重要性体现在其开创性、技术突破和广泛应用上,是每一位深度学习研究…...

Cursor + IDEA 双开极速交互
相信很多开发者朋友应该和我一样吧,都是Cursor和IDEA双开的开发模式:在Cursor中快速编写和生成代码,然后在IDEA中进行调试和优化 在这个双开模式的开发过程中,我就遇到一个说大不大说小不小的问题: 得在两个编辑器之间来回切换查…...

HDFS的设计架构
HDFS 是 Hadoop 生态系统中的分布式文件系统,设计用于存储和处理超大规模数据集。它具有高可靠性、高扩展性和高吞吐量的特点,适合运行在廉价硬件上。 1. HDFS 的设计思想 HDFS 的设计目标是解决大规模数据存储和处理的问题,其核心设计思想…...
为wordpress自定义一个留言表单并可以在后台进行管理的实现方法
要为WordPress添加留言表单功能并实现后台管理,你可以按照以下步骤操作: 1. 创建留言表单 首先,你需要创建一个留言表单。可以使用插件(如Contact Form 7)或手动编写代码。 使用Contact Form 7插件 安装并激活Contact Form 7插件。 创建…...

tauri-plugin-shell插件将_blank的a标签用浏览器打开了,,,解决办法
不要使用这个插件,这个插件默认会将网页中a标签为_blank的使用默认浏览器打开,但是这种做法在我的程序里不是很友好,我需要自定义这种行为,当我点击我自己的链接的时候,使用默认浏览器打开,当点击别的链接的…...

【大模型基础_毛玉仁】1.1 基于统计方法的语言模型
【大模型基础_毛玉仁】1.1 基于统计方法的语言模型 1.语言模型基础1.1 基于统计方法的语言模型1.1.1 n-grams 语言模型1.1.2 n-grams 的统计学原理 1.语言模型基础 语言是概率的。语言模型(LanguageModels, LMs)旨在准确预测语言符号的概率。 将按照语…...
使用 Docker 部署 RabbitMQ 并实现数据持久化
非常好!以下是一份完整的 Docker 部署 RabbitMQ 的博客文档,包含从安装到问题排查的详细步骤。你可以直接将其发布到博客中。 使用 Docker 部署 RabbitMQ 并实现数据持久化 RabbitMQ 是一个开源的消息队列系统,广泛应用于分布式系统中。使用…...
Pandas的数据转换函数
Pandas的数据转换函数:map, apply, applymap 参数描述map只用于Series,实现每个值->值的映射apply用于Series实现每个值的处理,用于DataFrame实现某个轴的Series的处理applymap只能用于DataFrame, 用于处理该DataFrame的每个元素 1. map用于Series值…...

影刀 RPA 实战开发阶段总结
目录 1. 影刀 RPA 官方教程的重要性 1.1系统全面的知识体系 1.2 权威准确的技术指导 1.3 贴合实际的案例教学 1.4高效的学习方法引导 2. 官方视频教程与实战 2.1 官方视频教程:奠定坚实基础 2.2 实战:拓展应用视野 3. 往期实战博文导航 3.1 初级…...
Linux系统上安装kafka
目录 1. 安装Java环境 2. 下载和解压Kafka 3. 配置Kafka 4. 启动ZooKeeper和Kafka 5. 测试Kafka 6. 停止服务 7.常见问题 1. 安装Java环境 Kafka依赖Java运行环境(JDK 8或更高版本): # 安装OpenJDK(推荐) yum…...

DeepSeek如何快速开发PDF转Word软件
一、引言 如今,在线工具的普及让PDF转Word成为了一个常见需求,常见的PDF转Word工具有收费的WPS,免费的有PDFGear,以及在线工具SmallPDF、iLovePDF、24PDF等。然而,大多数免费在线转换工具存在严重隐私风险——文件需上…...

虚拟机 | Ubuntu图形化系统: open-vm-tools安装失败以及实现文件拖放
系列文章目录 虚拟机 | Ubuntu 安装流程以及界面太小问题解决 文章目录 系列文章目录虚拟机 | Ubuntu 安装流程以及界面太小问题解决 前言一、VMware Tools 和 open-vm-tools 是什么1、VMware Tools2、open-vm-tools 二、推荐使用open-vm-tools(简单)1、…...
Mysql-经典故障案例(1)-主从同步由于主键问题引发的故障
故障报错 Could not execute Write_rows event on table test.users; Duplicate entry 3 for key PRIMARY, Error_code: 1062; handler error HA_ERR_FOUND_DUPP_KEY; the events master log mysql-bin.000031, end_log_pos 3297这是由于从库存在与主库相同主键值,…...

Linux下学【MySQL】中如何实现:多表查询(配sql+实操图+案例巩固 通俗易懂版~)
每日激励:“不设限和自我肯定的心态:I can do all things。 — Stephen Curry” 绪论: 本章是MySQL篇中,非常实用性的篇章,相信在实际工作中对于表的查询,很多时候会涉及多表的查询,在多表查询…...

ubuntu局域网部署stable-diffusion-webui记录
需要局域网访问,如下设置: 过程记录查看源码: 查看源码,原来修改参数:--server-name 故启动: ./webui.sh --server-name0.0.0.0 安装下载记录: 快速下载可设置: export HF_ENDPOI…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...