5c/c++内存管理
1. C/C++内存分布
int globalVar = 1; static int staticGlobalVar = 1; void Test() {static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3); } 1. 选择题:选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)globalVar在哪里?____ staticGlobalVar在哪里?____staticVar在哪里?____ localVar在哪里?____num1 在哪里?____char2在哪里?____ *char2在哪里?___pChar3在哪里?____ *pChar3在哪里?____ptr1在哪里?____ *ptr1在哪里?____ 2. 填空题:sizeof(num1) = ____; sizeof(char2) = ____; strlen(char2) = ____;sizeof(pChar3) = ____; strlen(pChar3) = ____;sizeof(ptr1) = ____; 3. sizeof 和 strlen 区别? sizeof是用来计算类型的字节数 strlen是用来计算字符串有多少个字符,直到遇到'\0'
【说明】
1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。
2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口 创建共享共享内存,做进程间通信。
3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
4. 数据段--存储全局数据和静态数据。
5. 代码段--可执行的代码/只读常量。
2. C语言中动态内存管理方式
#include <iostream> using namespace std; void Test() {int* p1 = (int*)malloc(sizeof(int));cout << *p1 << endl;free(p1);// 1.malloc/calloc/realloc的区别是什么?int* p2 = (int*)calloc(4, sizeof(int));//calloc可以初始化cout << *p2 << endl;int* p3 = (int*)realloc(p2, sizeof(int) * 10);//用来扩容的// 这里需要free(p2)吗?//不需要,realloc替我们搞了free(p3); } int main() {Test();return 0; }
3. C++中动态内存管理
C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因 此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。
3.1 new/delete操作内置类型
void Test() {// 动态申请一个int类型的空间int* ptr4 = new int;// 动态申请一个int类型的空间并初始化为10int* ptr5 = new int(10);// 动态申请3个int类型的空间int* ptr6 = new int[3];delete ptr4;delete ptr5;delete[] ptr6; }
申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],注意:匹配起来使用。
3.2 new和delete操作自定义类型
class A { public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;} private:int _a; }; int main() {// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间 还会调用构造函数和析构函数A* p1 = (A*)malloc(sizeof(A));A* p2 = new A(1);free(p1);delete p2;// 内置类型是几乎是一样的int* p3 = (int*)malloc(sizeof(int)); // Cint* p4 = new int;free(p3);delete p4;A* p5 = (A*)malloc(sizeof(A)*10);A* p6 = new A[10];free(p5);delete[] p6;return 0; }
注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与 free不会。
4. operator new与operator delete函数
4.1 operator new与operator delete函数
new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过 operator delete全局函数来释放空间。
/* operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间 失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否 则抛异常。 */ void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc) {// try to allocate size bytesvoid *p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p); } /* operator delete: 该函数最终是通过free来释放空间的 */ void operator delete(void *pUserData) {_CrtMemBlockHeader * pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg( pUserData, pHead->nBlockUse );__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLYreturn; } /* free的实现 */ #define free(p) _free_dbg(p, _NORMAL_BLOCK)
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果 malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施 就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
5. new和delete的实现原理
5.1 内置类型
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是: new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
5.2 自定义类型
new的原理
1. 调用operator new函数申请空间
2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理
1. 在空间上执行析构函数,完成对象中资源的清理工作
2. 调用operator delete函数释放对象的空间
new T[N]的原理
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对 象空间的申请
2. 在申请的空间上执行N次构造函数
delete[]的原理
1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释 放空间
6. 定位new表达式(placement-new)
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表
使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如 果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
class A { public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;} private:int _a; }; // 定位new/replacement new int main() {// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没有执行A* p1 = (A*)malloc(sizeof(A));new(p1)A; // 注意:如果A类的构造函数有参数时,此处需要传参p1->~A();free(p1);A* p2 = (A*)operator new(sizeof(A));new(p2)A(10);p2->~A();operator delete(p2);return 0; }
7. 常见面试题
7.1 malloc/free和new/delete的区别
malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地 方是:
1. malloc和free是函数,new和delete是操作符
2. malloc申请的空间不会初始化,new可以初始化
3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象,[]中指定对象个数即可
4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需 要捕获异常
6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new 在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成 空间中资源的清理
7.2 内存泄漏
7.2.1 什么是内存泄漏,内存泄漏的危害
什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内 存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对 该段内存的控制,因而造成了内存的浪费。 内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现 内存泄漏会导致响应越来越慢,最终卡死。
void MemoryLeaks()
{// 1.内存申请了忘记释放int* p1 = (int*)malloc(sizeof(int));int* p2 = new int;// 2.异常安全问题int* p3 = new int[10];Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.delete[] p3;
}
7.2.2 内存泄漏分类
堆内存泄漏(Heap leak)
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一 块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分 内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。
系统资源泄漏
指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放 掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。
7.2.3 如何检测内存泄漏
在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测,该 函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。
int main() {int* p = new int[10];// 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏_CrtDumpMemoryLeaks();return 0; }// 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置 Detected memory leaks! Dumping objects -> {79} normal block at 0x00EC5FB8, 40 bytes long. Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD Object dump complete.
因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜 防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时 一般都是借助第三方内存泄漏检测工具处理的。
7.2.4如何避免内存泄漏
1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps: 这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智 能指针来管理才有保证。
2. 采用RAII思想或者智能指针来管理资源。
3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
总结一下: 内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄 漏检测工具。
相关文章:

5c/c++内存管理
1. C/C内存分布 int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] { 1, 2, 3, 4 };char char2[] "abcd";const char* pChar3 "abcd";int* ptr1 (int*)malloc(sizeof(int) * 4);i…...

python实现的可爱卸载动画
在逛掘金时,掘金用户在B站看到的灵感进行的一个卸载窗口的动画效果的实用案例。人类是一种不断在学习的动物,并且是一种模仿能力学习能里比较强的动物。我这里是第三波的学习实践者咯! 相对VUE构建动画效果窗口,我更加喜欢用pytho…...
微服务的春天:基于Spring Boot的架构设计与实践
微服务的春天:基于Spring Boot的架构设计与实践 在如今的技术领域,微服务架构俨然成为了解决复杂系统开发与运维挑战的关键利器。作为一名资深运维和自媒体创作者,笔名Echo_Wish,我将深入探讨基于Spring Boot的微服务架构设计,结合实例代码说明观点,希望能为大家带来启发…...

*VulnHub-FristiLeaks:1.3暴力解法、细节解法,主打软硬都吃,隧道搭建、寻找exp、提权、只要你想没有做不到的姿势
*VulnHub-FristiLeaks:1.3暴力解法、细节解法,主打软硬都吃,隧道搭建、寻找exp、提权、只要你想没有做不到的姿势 一、信息收集 1、扫靶机ip 经典第一步,扫一下靶机ip arp-scan -l 扫描同网段 nmap -sP 192.168.122.0/242、指纹扫描、端口…...
OpenCV 颜色空间:原理与操作指南
颜色空间原理 RGB 颜色空间 RGB(Red, Green, Blue)是最常见的颜色空间,它通过红、绿、蓝三种颜色通道的不同强度组合来表示颜色。在 OpenCV 中,RGB 图像的每个像素由三个 8 位无符号整数(0 - 255)分别表示…...

国产编辑器EverEdit - 超多样式设置
1 设置-编辑-样式 1.1 设置说明 1.1.1 折叠样式 默认为箭头,折叠样式选项如下: 箭头: 矩形和线条 五边形 圆形图标 1.1.2 光标样式 光标用于指示当前用户输入位置,光标样式选项如下: 默认 纤细 字宽 …...

rabbitmq版本升级并部署高可用
RabbitMQ版本升级 先检查是否已经安装rabbitmq rpm -qa|grep rabbitmq|wc -l //如果结果是0,表示没有安装 rpm -e --nodeps $(rpm -qa|grep rabbitmq) //如安装了,则进行卸载 先检查是否已经安装erlang rpm -qa|grep erlang|wc -l //如果结果…...

Visual Studio 2022新建c语言项目的详细步骤
步骤1:点击创建新项目 步骤2:到了项目模板 --> 选择“控制台应用” (在window终端运行代码。默认打印"Hello World") --> 点击 “下一步” 步骤3:到了配置新项目模块 --> 输入“项目名称” --> 更改“位置”路径&…...

Spring Boot使用JDBC /JPA访问达梦数据库
Spring Boot 是一个广泛使用的 Java 框架,用于快速构建基于 Spring 的应用程序。对于达梦数据库(DMDB)的支持,Spring Boot 本身并没有直接内置对达梦数据库的集成,但你可以通过一些配置和依赖来支持达梦数据库。 以下…...
Spring Boot 消息队列(以RabbitMQ为例)
文章目录 RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装 Spring Boot 集成 RabbitMQ1. 创建 Spring Boot 项目2. 配置 RabbitMQ3. 定义消息队列和交换机4. 发送消息5. 接收消息6. 测试消息发送和接收 RabbitMQ 简介与安装 1. RabbitMQ 简介 RabbitMQ 是一个开源的消息…...
单元测试与仿真程序之间的选择
为什么写这篇文章 现在的工作需求,让我有必要总结和整理一下。 凡事都有适用的场景。首先这里我需要提示一下,这里的信息,可能并不普适。 但是可以肯定一点的是,有些人,不论做事还是写书,上下文还没有交待…...
确认机制面临的挑战
在传输控制协议中,确认机制(ACK 机制)是确保数据可靠交付、实现拥塞控制和丢包恢复的重要组成部分。然而,随着网络环境和业务需求的不断演进,确认机制在实际应用中面临着诸多挑战。今天我们探讨确认机制主要面临的几项…...
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示…...

[MySQL初阶]MySQL(4)基本查询
标题:[MySQL初阶]MySQL(4)基本查询 水墨不写bug 文章目录 一. 数据表设计二、对数据表的操作1. Create 操作(插入数据)查看最近受影响的行数: 2. Retrieve 操作(读取数据)࿰…...

基于STM32的智能家居蓝牙系统(论文+源码)
1总体方案设计 本次基于STM32的智能家居蓝牙系统,其系统总体架构如图2.1所示,采用STM32f103单片机作为控制器,通过DHT11传感器实现温湿度检测,MQ-2烟雾传感器实现烟雾检测,光敏电阻实现光照检测,同时将数据…...

QTS单元测试框架
1.QTS单元测试框架介绍 目前QTS项目采用C/C语言,而CppUnit就是xUnit家族中的一员,它是一个专门面向C的单元测试框架。因此,QTS采用CppUnit测试框架是比较理想的选择。 CppUnit按照层次来管理测试,最底层的就是TestCase,当有了几个TestCase以后,可以将它们组织成Te…...

《水利水电安全员考试各题型对比分析及应对攻略》
《水利水电安全员考试各题型对比分析及应对攻略》 单选题: 特点:四个选项中只有一个正确答案,相对难度较小。主要考查对基础知识的掌握程度。 应对攻略:认真审题,看清题目要求。对于熟悉的知识点,直接选择…...
sqlite3 c++ client选择; c++环境搭建 : abseil-cpp | fnc12/sqlite_orm
sqlite3 c client选择 今日20250305 2.4K星: 7月前最后提交核心: SRombauts/SQLiteCpp.git : 薄封装、命令式sql、非orm、支持事务2.4K星: 1月前最后提交核心: fnc12/sqlite_orm.git : 厚封装、非侵入、真orm、真泛型、类型复杂、支持事务、报错信息不完整(启动事…...

IMX6ULL驱动开发uboot篇02
目录 网络操作 第零步:先将网线跟电脑接好,打开串口连接到开发板上,然后上电,让UBoot停下来 第一步:查看我们的网线构成的虚拟子网是哪一个 第二步:我们必须把虚拟机的网卡模式从NAT改成桥接,…...

智谱AI-FunctionCall
智谱AI-FunctionCall 编写FuncationCall大模型的函数调用,先直观的感受一下的感受下FunctionCall的魅力 文章目录 智谱AI-FunctionCall[toc]1-参考网址2-思路整理3-代码拆件1-[非核心]两个业务函数2-[非核心]业务函数的JsonSchema定义3-[核心]FunctionCall的调用1-打…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...