确认机制面临的挑战
在传输控制协议中,确认机制(ACK 机制)是确保数据可靠交付、实现拥塞控制和丢包恢复的重要组成部分。然而,随着网络环境和业务需求的不断演进,确认机制在实际应用中面临着诸多挑战。今天我们探讨确认机制主要面临的几项关键挑战,并讨论这些挑战对传输控制性能的影响。
1. 带宽适应性
挑战描述:
在现代网络环境中,链路带宽可能从几十 Kbps 到几十 Gbps 甚至 100 Gbps 不等。如果接收方采用每收到固定数目的数据报文后就发送 ACK 报文,那么在高带宽环境下 ACK 数量将会线性增加,带来较大的计算和通信开销。
影响:
- ACK 开销过大,导致资源浪费。
- 反馈信息过于频繁,可能导致发送方处理负担加重,进而影响整个传输过程的性能。
2. 时延适应性
挑战描述:
不同网络环境的往返时延(RTT)差异显著:数据中心网络的 RTT 可能低至微秒级,而卫星通信网络的 RTT 则可能高达秒级。如果确认机制不能根据网络时延动态调整反馈时机,将会导致反馈延迟,从而影响拥塞控制和丢包恢复的效果。
影响:
- 反馈延迟可能导致发送方在拥塞或丢包发生时不能及时调整传输策略。
- 低 RTT 环境中可能因反馈过慢而降低链路利用率。
3. 抖动适应性
挑战描述:
网络抖动(包括带宽和时延的抖动)是有线与无线网络中普遍存在的现象。无线网络尤其受到信号干扰、重传等因素的影响,导致链路状态剧烈波动。如果确认机制无法适应抖动,会使反馈信息的时效性和准确性大打折扣。
影响:
- 抖动可能引起反馈信息不稳定,进而导致拥塞控制和丢包恢复决策的偏差。
- 在无线网络中,ACK 报文可能由于重传而导致反馈信息失真,影响整体传输效率。
4. 反向丢包
挑战描述:
确认机制依赖于从接收方向发送方反馈 ACK 报文以确认数据传输状态,但反向路径上的 ACK 报文本身也可能丢失。如果只有反向丢包而正向传输正常,虽然对整体传输性能影响较小,但在正反向同时发生丢包时,将严重影响反馈的及时性和准确性。
影响:
- 反向丢包可能导致发送方无法及时得知数据包的到达情况,从而延迟重传。
- 丢失的 ACK 信息会使得拥塞控制、速率调节等模块难以获得准确的网络状态信息。
5. 反向拥塞
挑战描述:
在多种网络场景中,ACK 报文所在的反向路径可能与其他流量共享瓶颈链路。尤其在非对称链路(如下行带宽远大于上行带宽的场景)中,反向路径容易出现拥塞,从而影响 ACK 报文的传输。
影响:
- 反向拥塞会导致 ACK 报文延迟或丢失,进而使得发送方调整传输速率的时机滞后。
- 可能导致整体传输过程中的反馈失真,使得拥塞控制算法无法准确估计网络状态。
6. 内部干扰
挑战描述:
在一些网络(尤其是无线网络)中,正向数据报文和反向 ACK 报文共用有限的频谱资源。当 ACK 报文数量较大时,会与数据报文争用信道资源,产生内部干扰。
影响:
- 内部干扰会降低无线链路的有效带宽利用率。
- 发送 ACK 报文所需的资源开销与数据报文几乎相同,可能导致实际传输效率降低。
参考文献
中文引用格式: 李彤, 郑凯, 徐恪. 传输控制中的确认机制研究. 软件学报. http://www.jos.org.cn/1000-9825/6939.htm
英文引用格式: Li T, Zheng K, Xu K. Acknowledgment Mechanisms of Transmission Control. Ruan Jian Xue Bao/Journal of Software (in Chinese). http://www.jos.org.cn/1000-9825/6939.htm
相关文章:
确认机制面临的挑战
在传输控制协议中,确认机制(ACK 机制)是确保数据可靠交付、实现拥塞控制和丢包恢复的重要组成部分。然而,随着网络环境和业务需求的不断演进,确认机制在实际应用中面临着诸多挑战。今天我们探讨确认机制主要面临的几项…...
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示…...
[MySQL初阶]MySQL(4)基本查询
标题:[MySQL初阶]MySQL(4)基本查询 水墨不写bug 文章目录 一. 数据表设计二、对数据表的操作1. Create 操作(插入数据)查看最近受影响的行数: 2. Retrieve 操作(读取数据)࿰…...
基于STM32的智能家居蓝牙系统(论文+源码)
1总体方案设计 本次基于STM32的智能家居蓝牙系统,其系统总体架构如图2.1所示,采用STM32f103单片机作为控制器,通过DHT11传感器实现温湿度检测,MQ-2烟雾传感器实现烟雾检测,光敏电阻实现光照检测,同时将数据…...
QTS单元测试框架
1.QTS单元测试框架介绍 目前QTS项目采用C/C语言,而CppUnit就是xUnit家族中的一员,它是一个专门面向C的单元测试框架。因此,QTS采用CppUnit测试框架是比较理想的选择。 CppUnit按照层次来管理测试,最底层的就是TestCase,当有了几个TestCase以后,可以将它们组织成Te…...
《水利水电安全员考试各题型对比分析及应对攻略》
《水利水电安全员考试各题型对比分析及应对攻略》 单选题: 特点:四个选项中只有一个正确答案,相对难度较小。主要考查对基础知识的掌握程度。 应对攻略:认真审题,看清题目要求。对于熟悉的知识点,直接选择…...
sqlite3 c++ client选择; c++环境搭建 : abseil-cpp | fnc12/sqlite_orm
sqlite3 c client选择 今日20250305 2.4K星: 7月前最后提交核心: SRombauts/SQLiteCpp.git : 薄封装、命令式sql、非orm、支持事务2.4K星: 1月前最后提交核心: fnc12/sqlite_orm.git : 厚封装、非侵入、真orm、真泛型、类型复杂、支持事务、报错信息不完整(启动事…...
IMX6ULL驱动开发uboot篇02
目录 网络操作 第零步:先将网线跟电脑接好,打开串口连接到开发板上,然后上电,让UBoot停下来 第一步:查看我们的网线构成的虚拟子网是哪一个 第二步:我们必须把虚拟机的网卡模式从NAT改成桥接,…...
智谱AI-FunctionCall
智谱AI-FunctionCall 编写FuncationCall大模型的函数调用,先直观的感受一下的感受下FunctionCall的魅力 文章目录 智谱AI-FunctionCall[toc]1-参考网址2-思路整理3-代码拆件1-[非核心]两个业务函数2-[非核心]业务函数的JsonSchema定义3-[核心]FunctionCall的调用1-打…...
数据保险箱:备份文件的关键价值与自动化实践
在信息化社会,数据已经成为我们生活、工作和学习的核心组成部分。无论是企业机密、个人隐私,还是创意作品、研究数据,它们都以数字形式存在于我们的电子设备中。然而,数据如同脆弱的玻璃制品,稍有不慎就可能面临丢失或…...
数字电路基础——逻辑门
逻辑门是数字电子技术中的基本构建块。这些组件用于对1和0进行操作,可以将它们组合起来创建其他构建块,并设计出如锁存器、触发器、加法器、移位寄存器等电路。 七种主要的逻辑门类型: 一、基本逻辑门 1.1 与门(AND gate) 1.1.1 逻辑运算规则 与门有多个输入端和一个输出…...
爬虫逆向:脱壳工具BlackDex的详细使用
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、BlackDex简介二、下载与安装三、基本使用步骤3.1 启动BlackDex3.2 导入目标APK文件3.3 开始脱壳3.4 查看脱壳结果四、后续分析4.1 使用 JADX 反编译 Dex 文件4.2 使用 Apktool 反编译 Dex 文件4.3 JD-GUI4.4 dex2ja…...
JavaScript中的Math()
目录 一、Math() 1.1floor() 1.2ceil() 1.3round() 1.4random() 1.5max() 1.6min() 1.7pow() 1.8sqrt() 1.9trunc() 二、parseFloat() 三、toFixed() 四、toString() 4.1Number类型转换为字符串 4.2Boolean类型转换为字符串 4.3Date()类型转换为字符串 4.4Arr…...
深度学习模型Transformer初步认识整体架构
第一章:人工智能之不同数据类型及其特点梳理 第二章:自然语言处理(NLP):文本向量化从文字到数字的原理 第三章:循环神经网络RNN:理解 RNN的工作机制与应用场景(附代码) 第四章:循环神经网络RNN、LSTM以及GR…...
【从模仿到超越:AIGC的崛起与AGI的终极梦想】
一、基本概念 1. AIGC(人工智能生成内容) 定义:基于人工智能技术生成文本、图像、音频、视频等数字内容的方法。技术基础:依赖深度学习模型(如GPT、DALL-E、Stable Diffusion)和自然语言处理(…...
标量、向量、矩阵与张量:从维度理解数据结构的层次
在数学和计算机科学中,维度描述了数据结构的复杂性,而标量、向量、矩阵、张量则是不同维度的数据表示形式。它们的关系可以理解为从简单到复杂的扩展,以下是详细解析: 1. 标量(Scalar):0维数据 …...
windows 上删除 node_modules
在 Windows 11 上,你可以通过命令行来删除 node_modules 文件夹并清除 npm 缓存。以下是具体步骤: 删除 node_modules 打开命令提示符(Command Prompt)或终端(PowerShell)。 导航到项目目录。你可以使用 …...
单例模式的五种实现方式
1、饿汉式 ①实现:在类加载的时候就初始化实例 ②优点:线程安全 ③缺点:实例在类加载的时候创建,可能会浪费资源 //饿汉式 public class EagerSingleton{private EagerSingleton(){} //私有构造方法private static EagerSingle…...
启智平台华为昇腾910B使用MS-Swift微调Janus-Pro-7/1B
最近想要微调一下DeepSeek出品的Janus多模态大模型 利用启智平台的昇腾910B国产计算卡进行大模型的微调 查看了一下MS-Swift支持了Janus模型的微调,LLamafactory好像暂时还不支持该模型的微调 看到了MS-Swift有单独对昇腾的支持,因此首先要安装swift&…...
蓝桥试题:传球游戏(二维dp)
一、题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。 游戏规则是这样的:n 个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球࿰…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
