顺序表与链表·续
引言
本文承接上文(顺序表与链表-CSDN博客),开始对链表的要点提炼。前文提到顺序表适合需要频繁随机访问且数据量固定的场景,而链表适合需要频繁插入和删除且数据量动态变化的场景。链表的引入弥补了顺序表在动态性和操作效率上的不足,是线性表的重要实现方式之一。
链表
概念
分类
链表的分类可以根据以下维度进行:
-
单向或双向:决定节点的指针数量和遍历方向。
-
带头或不带头:决定是否有额外的头节点简化操作。
-
循环或不循环:决定链表是否形成环。
通过组合这些维度,可以设计出适合不同场景的链表结构。例如:
-
带头单向循环链表:适合实现队列。
-
带头双向循环链表:适合需要双向遍历且操作简化的场景。
而我们常遇到的主要是不带头单向非循环链表和带头双向循环链表(以下图例分别对应这两种链表)
实现
无头单向非循环链表的简单实现
//"slist.h"
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>typedef int SLTDateType;typedef struct SListNode
{SLTDateType data;struct SListNode* next;
}SListNode;// 动态申请一个节点
SListNode* BuySListNode(SLTDateType x)
{SListNode* newnode = (SListNode*)malloc(sizeof(SListNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;return newnode;
}// 单链表打印
void SListPrint(SListNode* plist)
{SListNode* cur = plist;while (cur != NULL){printf("%d->", cur->data);cur = cur->next;}printf("NULL\n");
}// 单链表尾插
void SListPushBack(SListNode** pplist, SLTDateType x)
{SListNode* newnode = BuySListNode(x);if (*pplist == NULL) {*pplist = newnode;}else{SListNode* tail = *pplist;while (tail->next!=NULL){tail = tail->next;}tail->next = newnode;}}
// 单链表的头插
void SListPushFront(SListNode** pplist, SLTDateType x)
{SListNode* newnode = BuySListNode(x);newnode->next = *pplist;*pplist = newnode;}// 单链表的尾删
void SListPopBack(SListNode** pplist)
{assert(pplist);assert(*pplist);//一个节点if ((*pplist)->next == NULL) {free(*pplist);*pplist = NULL;}//多个节点SListNode* tail = *pplist;while (tail->next->next!=NULL){tail = tail->next;}free(tail->next);tail->next = NULL;}
void SListPopFront(SListNode** pplist) {// 防御性检查:拦截非法输入if (pplist == NULL) {fprintf(stderr, "Error: Invalid pointer in SListPopFront\n");return;}// 业务逻辑检查:空链表直接返回if (*pplist == NULL) {return;}SListNode* tmp = *pplist;*pplist = tmp->next;free(tmp);
}// 单链表查找
SListNode* SListFind(SListNode* plist, SLTDateType x)
{SListNode* cur = plist;while (cur) {if (cur->data == x) {return cur;}cur = cur->next;}return NULL;
}
// 单链表在pos位置之后插入x
// 分析思考为什么不在pos位置之前插入? // 因为没有前置指针
// 若要在 pos 之前插入,必须从头节点开始遍历链表找到 pos 的前驱节点,时间复杂度为 O(n)
void SListInsertAfter(SListNode* pos, SLTDateType x)
{if (pos == NULL) return;SListNode* newNode = BuySListNode(x);newNode->next = pos->next;pos->next = newNode;
}
// 单链表删除pos位置之后的值
// 分析思考为什么不删除pos位置? //删除 pos 节点需要知道其前驱节点,而单链表无法直接获取前驱节点
// 必须从头遍历链表,时间复杂度为O(n),删除 pos 之后的节点只需修改 pos->next,时间复杂度为O(1)。void SListEraseAfter(SListNode* pos)
{if (pos == NULL || pos->next == NULL) return;SListNode* tmp = pos->next;pos->next = tmp->next;free(tmp);
}// 在pos的前面插入
void SLTInsert(SListNode** pphead, SListNode* pos, SLTDateType x)
{assert(pphead);assert(pos);assert(*pphead);if (*pphead == pos) SListPushFront(pphead,x);else{SListNode* prev = *pphead;while (prev->next!=pos){prev = prev->next;}SListNode* newnode=BuySListNode(x);prev->next = newnode;newnode->next = pos;}
}// 删除pos位置
void SLTErase(SListNode** pphead, SListNode* pos)
{assert(pphead);assert(*pphead);assert(pos);if (*pphead == pos){// 头删SListPopFront(pphead);}else{SListNode* prev = *pphead;while (prev->next != pos){prev = prev->next;}prev->next = pos->next;free(pos);pos = NULL;}
}void SLTDestroy(SListNode** pphead)
{assert(pphead);SListNode* cur = *pphead;while (cur) {SListNode* tmp = cur;cur = cur->next;free(tmp);}*pphead = NULL;
}
关键点说明
-
二级指针的使用:
-
修改头指针时(如插入/删除头节点),需通过二级指针
pplist修改一级指针*pplist。 -
示例:
SListPushFront和SListPopFront直接修改头指针。
-
-
边界条件处理:
-
空链表、单节点链表、尾节点/头节点操作需特殊处理。
-
例如
SListPopBack中需处理链表只有一个节点的情况。
-
-
时间复杂度:
-
头插/头删:O(1)/O(1)
-
尾插/尾删:O(n)/O(n)
-
插入/删除指定位置:平均 O(n)/O(n)(需遍历找到位置)
-
-
内存管理:
-
每次
malloc后需检查内存分配是否成功。 -
删除节点后需及时
free防止内存泄漏。
-
若需要频繁在任意位置前插入或删除,最好使用双向链表,它可以通过前驱指针直接操作,时间复杂度为 O(1)/O(1)。

相关文章:
顺序表与链表·续
引言 本文承接上文(顺序表与链表-CSDN博客),开始对链表的要点提炼。前文提到顺序表适合需要频繁随机访问且数据量固定的场景,而链表适合需要频繁插入和删除且数据量动态变化的场景。链表的引入弥补了顺序表在动态性和操作效率上的…...
nvidia驱动升级-ubuntu 1804
升级 1.从官网下载*.run驱动文件 2.卸载原始驱动 sudo /usr/bin/nvidia-uninstall sudo apt-get --purge remove nvidia-\* # 可能不需要加-\ sudo apt-get purge nvidia-\* # 可能不需要加-\ sudo apt-get purge libnvidia-\* # 可能不需要…...
【Linux】——初识操作系统
文章目录 冯-诺依曼体系结构操作系统shell 冯-诺依曼体系结构 我们现在所使用的计算机就是冯-诺依曼体系结构。 存储器就是内存。 由下图可知,寄存器最快,为啥不用寄存器呢? 因为越快价格就最贵,冯诺依曼体系结构的诞生…...
本地化deepseek
小白都能拥有自己的人工智能 1、我本地环境 系统:win10 cpu:i7(i7-12700),差不多就行 硬盘:500G+2T,可以不用这么大 显卡:七彩虹2060 12G ,够用了 我的配置最高也只能配上8B了, R1模型版本CPUGPU内存存储8B Intel Core i7/AMD Ryzen 7 及以上 无强制要求,有 4…...
利用可变参数模板,可打印任意参数和参数值。(C++很好的调式函数)
很酷的应用: (1) 如何获取可变参数名 代码例子: #define _test(...) (test_t(#__VA_ARGS__, __VA_ARGS__))template<typename... Args> void test_t(const char* names, Args... args) {std::cout << names <<…...
Yashan DB 体系结构
一、体系结构概况 1.1 线程管理 YashanDB采用多线程架构,线程分为两类: • 工作线程(Worker Threads):每个客户端连接到数据库实例时,会创建一个工作线程。工作线程负责处理客户端的SQL请求,执…...
测试工程师Deepseek实战之如何反向PUA它
问: 你是一名资深测试开发工程师 帮我设计一个提效工具,具有以下功能: 1.页面使用PYQT5设计,用两个输入控件,最好是日期类型的控件,第一个日期控件作为开始日期,第二个日期控件作为结束日期;前后…...
Windows系统中在VSCode上配置CUDA环境
前置步骤 安装符合GPU型号的CUDA Toolkit 配置好 nvcc 环境变量 安装 Visual Studio 参考https://blog.csdn.net/Cony_14/article/details/137510909 VSCode 安装插件 Nsight Visual Studio Code Editionvscode-cudacpp 安装 cmake 并配置好环境变量 注:Windows 端…...
React Native 0.76 升级后 APK 体积增大的原因及优化方案
在将 React Native 从 0.71 升级到 0.76 后,打包体积从 40 多 MB 增加到了 80 MB。经过一系列排查和优化,最终找到了解决方案,并将优化过程整理如下。 1. React Native 0.76 体积增大的可能原因 (1) 新架构默认启用 React Native 0.76 默认启用了 New Architecture(新架…...
pycharm找不到conda可执行文件
conda 24.9.2 在pycharm的右下角就可以切换python解释器了...
定时任务框架
常用定时任务框架 JDK 自带的 ScheduledExecutorService 适用于轻量级定时任务,基于线程池实现。API 简单,适用于小规模任务调度。 Quartz 强大的 Java 任务调度框架,支持 Cron 表达式、分布式集群、持久化等。适用于复杂调度场景࿰…...
ESP32S3读取数字麦克风INMP441的音频数据
ESP32S3 与 INMP441 麦克风模块的集成通常涉及使用 I2S 接口进行数字音频数据的传输。INMP441 是一款高性能的数字麦克风,它通过 I2S 接口输出音频数据。在 Arduino 环境中,ESP32S3 的开发通常使用 ESP-IDF(Espressif IoT Development Framew…...
利用后缀表达式构造表达式二叉树的方法
后缀表达式(逆波兰表达式)是一种将运算符放在操作数之后的表达式表示法。利用后缀表达式构造表达式二叉树的方法主要依赖于栈结构。 转换步骤 初始化 创建一个空栈。 遍历后缀表达式 对后缀表达式的每个符号依次处理: 遇到操作数 如果当前符…...
使用express创建服务器保存数据到mysql
创建数据库和表结构 CREATE DATABASE collect;USE collect;CREATE TABLE info (id int(11) NOT NULL AUTO_INCREMENT,create_date bigint(20) DEFAULT NULL COMMENT 时间,type varchar(20) DEFAULT NULL COMMENT 数据分类,text_value text COMMENT 内容,PRIMARY KEY (id) ) EN…...
YOLOv12本地部署教程——42%速度提升,让高效目标检测触手可及
YOLOv12 是“你只看一次”(You Only Look Once, YOLO)系列的最新版本,于 2025 年 2 月发布。它引入了注意力机制,提升了检测精度,同时保持了高效的实时性能。在保持速度的同时,显著提升了检测精度。例如&am…...
SQLAlchemy系列教程:如何防止SQL注入
SQL注入是一种常见的安全漏洞,它允许攻击者通过应用程序的SQL查询操纵数据库。使用ORM工具(如SQLAlchemy)提供的内置功能可以帮助减轻这些风险。本教程将指导您完成保护SQLAlchemy查询的实践。 了解SQL注入 当攻击者能够通过用户输入插入或操…...
1. 树莓派上配置机器人环境(具身智能机器人套件)
1. 安装树莓派系统 镜像下载地址(windows/Mac/Ubuntu),安装Pi5. 2. 环境配置(登录Pi系统) 2.1 启用 SSH From the Preferences menu, launch Raspberry Pi Configuration. Navigate to the Interfaces tab. Select Enable…...
基于SpringBoot的智慧停车场小程序(源码+论文+部署教程)
运行环境 • 前端:小程序 Vue • 后端:Java • IDE工具:IDEA(可自行选择) HBuilderX 微信开发者工具 • 技术栈:小程序 SpringBoot Vue MySQL 主要功能 智慧停车场微信小程序主要包含小程序端和…...
【从零开始学习计算机科学】数字逻辑(九)有限状态机
【从零开始学习计算机科学】数字逻辑(九)有限状态机 有限状态机状态机的表示方法有限状态机的Verilog描述有限状态机 有限状态机(简称状态机)相当于一个控制器,它将一项功能的完成分解为若干步,每一步对应于二进制的一个状态,通过预先设计的顺序在各状态之间进行转换,状…...
HarmonyOS Next~鸿蒙系统ArkCompiler跨平台编译技术的革新实践
HarmonyOS Next~鸿蒙系统ArkCompiler跨平台编译技术的革新实践 引言 在万物互联时代,操作系统对编译技术的需求已从单纯的代码转换演变为跨设备协同、高效资源调度与极致性能优化的综合挑战。华为鸿蒙系统(HarmonyOS)自主研发的ArkCompiler…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
AWS vs 阿里云:功能、服务与性能对比指南
在云计算领域,Amazon Web Services (AWS) 和阿里云 (Alibaba Cloud) 是全球领先的提供商,各自在功能范围、服务生态系统、性能表现和适用场景上具有独特优势。基于提供的引用[1]-[5],我将从功能、服务和性能三个方面进行结构化对比分析&#…...
