当前位置: 首页 > news >正文

人工智能之数学基础:对线性代数中逆矩阵的思考?

本文重点

逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。

关于逆矩阵的思考

现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过程是等价于向量a先经过矩阵1函数作用再经过矩阵2的函数作用的。

如果此时向量a等于向量c,那么我们可以认为矩阵1和矩阵2对于向量的加工作用刚好相反。那么就说矩阵1和矩阵2互为逆矩阵。那么此时矩阵1和矩阵2的乘积为单位矩阵,为什么会这样呢?

如图所示,向量a乘以一个矩阵还是原向量,那么这个矩阵肯定是单位矩阵,所以从等价的角度来看,矩阵1和矩阵2的乘积就是单位矩阵。

相关文章:

人工智能之数学基础:对线性代数中逆矩阵的思考?

本文重点 逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。 关于逆矩阵的思…...

嵌入式开发之串行数据处理

前题 前面几篇文章写了关于嵌入式软件开发时,关于串行数据处理的一些相关内容,有兴趣的可以看看《嵌入式开发:软件架构、驱动开发与串行数据处理》、《嵌入式软件开发之生产关系模型》和《嵌入式开发之Modbus-RTU协议解析》相关的内容。从业十…...

机器学习(六)

一,决策树: 简介: 决策树是一种通过构建类似树状的结构(颠倒的树),从根节点开始逐步对数据进行划分,最终在叶子节点做出预测结果的模型。 结构组成: 根节点:初始的数据集…...

结合unittest和pytest进行虚拟数据库测试

使用 pytest 和 MagicMock 模拟数据库操作,并测试假设的 create_user 函数,将用户添加到数据库中。 代码实现 from datetime import date from typing import List, Optional from unittest.mock import MagicMock from pydantic import BaseModel, Fi…...

Spring Boot 监听器(Listeners)详细教程

Spring Boot 监听器(Listeners)详细教程 目录 Spring Boot 监听器概述监听器核心概念最佳使用场景实现步骤高级配置详细使用场景总结 1. Spring Boot 监听器概述 Spring Boot 监听器(Listeners)基于 Spring Framework 的事件机制…...

工具介绍《githack》以及Git 命令行

一、Githack 工具介绍 Githack 是一个用于检测和利用网站 .git 目录泄露漏洞的安全工具。当网站错误配置导致 .git 目录可公开访问时,攻击者可通过该工具下载 .git 中的版本控制文件,并重建完整的项目源代码。 核心用途 检测 .git 目录泄露漏洞。从泄…...

【hello git】git rebase、git merge、git stash、git cherry-pick

目录 一、git merge:保留了原有分支的提交结构 二、git rebase:提交分支更加整洁 三、git stash 四、git cherry-pick 共同点:将 一个分支的提交 合并到 到另一个上分支上去 一、git merge:保留了原有分支的提交结构 现有一个模型…...

MR的环形缓冲区(底层)

MapReduce的大致流程: 1、HDFS读取数据; 2、按照规则进行分片,形成若干个spilt; 3、进行Map 4、打上分区标签(patition) 5、数据入环形缓冲区(KVbuffer) 6、原地排序&#xff…...

下载Hugging Face模型的几种方式

1.网页下载 直接访问Hugging Face模型页面,点击“File and versions”选项卡,选择所需的文件进行下载。 2.使用huggingface-cli 首先,安装huggingface_hub: pip install huggingface_hub 然后,使用以下命令下载模型&#xff1…...

Java 第十一章 GUI编程(2)

目录 GUI 事件处理 基本思路 添加事件监听器 对话框 实例 GUI 事件处理 对于采用了图形用户界面的程序来说,事件控制是非常重要的;到目前为止, 我们编写的图形用户界面程序都仅仅只是完成了界面,而没有任何实际的功能&…...

Redis数据结构深度解析:从String到Stream的奇幻之旅(一)

Redis系列文章 《半小时掌握Redis核心操作:从零开始的实战指南》-CSDN博客 Redis数据结构深度解析:从String到Stream的奇幻之旅(一)-CSDN博客 Redis数据结构深度解析:从String到Stream的奇幻之旅(二&…...

7V 至 30V 的超宽 VIN 输入范围,转换效率高达 96%的WD5030

WD5030 具备 7V 至 30V 的超宽 VIN 输入范围,这一特性使其能够适应多种不同电压等级的供电环境,无论是在工业设备中常见的较高电压输入,还是在一些便携式设备经过初步升压后的电压,WD5030 都能轻松应对,极大地拓展了应…...

【Git原理与使用一】Git概念与基本操作

文章目录 1. Git 的概念2. Git 的安装3. Git 的认识3.1 创建本地仓库3.2 配置Git3.3 认识工作区、暂存区、版本库 4. Git 的基本操作4.1、认识几个指令1)git add 添加命令2)git commit 提交命令3)git log 查看日志命令4)git cat-f…...

kettle工具使用从入门到精通(一)

安装 可以从链接: 官网(下载链接在Pentaho.pdf文件里)或者网络上查找对应的版本安装 Kettle (PDI) 版本与 JDK 版本对应关系 Kettle (PDI) 版本支持的 JDK 版本备注PDI 9.x 及以上JDK 11 或更高版本推荐使用 OpenJDK 或 Oracle JDK 11。PDI 8.xJDK 8 …...

Java 实现 Oracle 的 MONTHS_BETWEEN 函数

介绍 因为系统迁移, 有一些函数要转成 Java 版本, Oracle 的 官方介绍 - MONTHS_BETWEEN MONTHS_BETWEEN returns number of months between dates date1 and date2. The month and the last day of the month are defined by the parameter NLS_CALENDAR. If date1 is late…...

windows下使用msys2编译ffmpeg

三种方法: 1、在msys2中使用gcc编译 2、在msys2中使用visual studio编译(有环境变量) 3、在msys2中使用visual studio编译(无环境变量) 我的环境: 1、msys2-x86_64-20250221 2、vs2015 3、ffmpeg-7.1…...

Vivado常用的时序约束方法

1,create_clock :创建时钟约束 create_clock -period 20.000 -name sys_clk [get_ports sys_clk 该约束含义是创建一个时钟周期20ns的时钟,时钟名字为sys_clk。注意:如果是差分时钟,只需要约束差分时钟的P端,N端不用约束。 2,set_clock_uncertainty:设置时钟不确定性 s…...

力扣HOT100之哈希:1. 两数之和

这道题之前刷代码随想录的时候已经刷过好几遍了&#xff0c;看到就直接秒了。这道题主要是通过unordered_map<int, int>来建立哈希表&#xff0c;其中键用来保存向量中的元素&#xff0c;而对应的值则为元素的下标。遍历整个向量&#xff0c;当遍历到nums[i]时&#xff0…...

如何在rust中解析 windows 的 lnk文件(快捷方式)

一、从标题二开始看&#x1f601; 这些天在使用rust写一个pc端应用程序&#xff0c;需要解析lnk文件获取lnk的图标以及原程序地址&#xff0c;之前并没有过pc端应用程序开发的经验&#xff0c; 所以在广大的互联网上游荡了两天。额&#x1f97a; 今天找到了这个库 lnk_parse很…...

豆包大模型 MarsCode AI 刷题专栏 001

001.找单独的数 难度&#xff1a;易 问题描述 在一个班级中&#xff0c;每位同学都拿到了一张卡片&#xff0c;上面有一个整数。有趣的是&#xff0c;除了一个数字之外&#xff0c;所有的数字都恰好出现了两次。现在需要你帮助班长小C快速找到那个拿了独特数字卡片的同学手上…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...