当前位置: 首页 > news >正文

OmniParser技术分析(一)

1.引言

通过上篇文章介绍 OmniParser:下一代纯视觉UI自动化测试先驱相信大家已经对OmniParser有初步了解,接下来详细介绍下OmniParser使用了哪些技术模型实现了对UI纯视觉的检测和理解。

2.整体方案

通过阅读OmniParser提供的运行Demo代码知道,其实整个UI纯视觉检测主要分为2部分,涉及3个环节分别是:图片OCR、图片icon检测、图片元素理解,分别使用的模型为:

环节模型作用
图片OCRpaddle_ocr识别图片文字区域和坐标
图片icon检测yolov8n获取图片目标区域和坐标
图片元素理解Florence-2-base-ft对检测到的元素理解

以下是从官网提供的demo程序中的截取:

    def parse(self, image_base64: str):image_bytes = base64.b64decode(image_base64)image = Image.open(io.BytesIO(image_bytes))print('image size:', image.size)box_overlay_ratio = max(image.size) / 3200draw_bbox_config = {'text_scale': 0.8 * box_overlay_ratio,'text_thickness': max(int(2 * box_overlay_ratio), 1),'text_padding': max(int(3 * box_overlay_ratio), 1),'thickness': max(int(3 * box_overlay_ratio), 1),}(text, ocr_bbox), _ = check_ocr_box(image, display_img=False, output_bb_format='xyxy', easyocr_args={'text_threshold': 0.8}, use_paddleocr=False)dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image, self.som_model, BOX_TRESHOLD = self.config['BOX_TRESHOLD'], output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=self.caption_model_processor, ocr_text=text,use_local_semantics=True, iou_threshold=0.7, scale_img=False, batch_size=128)return dino_labled_img, parsed_content_list, label_coordinates

3.模型的介绍

3.1 Paddle_ocr

官方针对图片字符识别推荐使用的是paddle_ocr,猜测原因应该是效果不错 + 开源,接下来介绍下paddle_ocr基本使用。

3.1.1安装

pip install paddleocr

由于PaddleOCR支持多种语言,需要设置一些配置参数,以下为Demo设置的参数,识别的语言设置的英文,这里如果识别中文修改为lang=‘ch’

paddle_ocr = PaddleOCR(lang='en',  # other lang also availableuse_angle_cls=False,use_gpu=False,  # using cuda will conflict with pytorch in the same processshow_log=False,max_batch_size=1024,use_dilation=True,  # improves accuracydet_db_score_mode='slow',  # improves accuracyrec_batch_num=1024)
result = paddle_ocr.ocr(image_np, cls=False)[0]

识别结果格式示例如下,分为有文本框,文字和识别置信度

[[[28.0, 37.0], [302.0, 39.0], [302.0, 72.0], [27.0, 70.0]], ('纯臻营养护发素', 0.9658738374710083)]
......

3.2 YOLOv8n

3.2.1. 图标检测模型简介

图标检测模型是OmniParser-v2的基础组件之一,主要负责从屏幕截图中识别并定位可交互的UI元素,如按钮、输入框等。该模型经过大规模数据集训练,能够检测最小至8×8像素的元素,确保在各种分辨率和界面复杂度下都能准确识别。使用的检测模型为YOLOv8,以下为官网的介绍:

YOLOv8 was released by Ultralytics on January 10th, 2023, offering cutting-edge performance in terms of accuracy and speed. Building upon the advancements of previous YOLO versions, YOLOv8 introduced new features and optimizations that make it an ideal choice for various object detection tasks in a wide range of applications.
翻译:YOLOv8 由 Ultralytics 于 2023 年 1 月 10 日发布,在准确率和速度方面提供一流的性能。在之前 YOLO 版本的改进基础上,YOLOv8 引入了新功能和优化,使其成为广泛应用中各种对象检测任务的理想选择。

下面图片是官网提供COCO数据上检测结果对比,v8一共有5种变形模型,从官方的测试结果看yolov8n其实是效果最差的,不知OmniParser为啥选这个检测模型。
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/e501af0477de4010839ab8344f4e23cc.png在这里插入图片描述

3.2.2 YOLOv8模型使用

from ultralytics import YOLO# Load a COCO-pretrained YOLOv8n model
model = YOLO("yolov8n.pt")# Display model information (optional)
model.info()# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model("path/to/bus.jpg")

这里推荐个YOLO网络结构可视化的工具:netron具体用法可以搜下,后续再抽时间解读网络结构。

3.2.3 YOLOv8 主要特点

  • 先进的主干和颈部架构

YOLOv8 employs state-of-the-art backbone and neck architectures, resulting in improved feature extraction and object detection performance.

  • 无锚分割 Ultralytics 头

YOLOv8 adopts an anchor-free split Ultralytics head, which contributes to better accuracy and a more efficient detection process compared to anchor-based approaches.

  • 优化的准确度-速度权衡

With a focus on maintaining an optimal balance between accuracy and speed, YOLOv8 is suitable for real-time object detection tasks in diverse application areas.

  • 优化的准确度-速度权衡

YOLOv8 offers a range of pre-trained models to cater to various tasks and performance requirements, making it easier to find the right model for your specific use case.

3. Florence-2

Florence-2 是微软与2024年6月发布的多模态大模型,专为视觉理解任务设计,旨在处理多种视觉和视觉-语言任务。它在计算机视觉领域展现了强大的泛化能力,能够处理多种视觉任务,如图像理解、对象检测、图像字幕生成等。

Florence-2 主要特点:

  • 通用视觉理解:采用模块化设计,方便集成不同的LLM,满足多样化需求。
  • 多模态学习:结合自然语言处理能力,实现视觉-语言任务,如图像字幕生成和视觉问答。
  • 大规模数据训练:使用大规模、高质量的数据集进行训练,提升模型的泛化能力和鲁棒性。
  • 高效推理:优化了计算效率,使其能够在云端和本地设备上快速推理。
  • 跨任务一致性:在不同的视觉任务上表现稳定,适用于多种应用场景,如自动驾驶、医疗影像分析和智能监控。

在官网Demo中可以看出使用的是Florence-2-base,Model size是0.23B,整体比较小,下面是运行模型的demo程序。

import requestsfrom PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)prompt = "<OD>"url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=1024,do_sample=False,num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))print(parsed_answer)

4.结语

OmniParser-v2通过集成上述多种先进模型,实现了从屏幕截图到结构化数据的高效转换,为大型语言模型赋予了实际的计算机操作能力。但仔细分析使用的模型分支都为参数量最小的,实际测试下来效果的话也会大打折扣,猜测应该是因为开源替换了原先效果更优的模型。后续继续挖掘下每个模型具体的实现以及如何进行模型的微调,帮助大家能在具体的业务场景实现定制化。

参考资料:

  • paddleocr官方文档
  • ultralytics
  • Florence-2-base-HF

相关文章:

OmniParser技术分析(一)

1.引言 通过上篇文章介绍 OmniParser:下一代纯视觉UI自动化测试先驱相信大家已经对OmniParser有初步了解&#xff0c;接下来详细介绍下OmniParser使用了哪些技术模型实现了对UI纯视觉的检测和理解。 2.整体方案 通过阅读OmniParser提供的运行Demo代码知道&#xff0c;其实整…...

什么是hive

Apache Hive 是一个基于 Hadoop 生态系统构建的数据仓库工具&#xff0c;主要用于处理和分析大规模的结构化数据。它允许用户通过类似 SQL 的查询语言&#xff08;HiveQL&#xff09;进行数据操作&#xff0c;而无需直接编写复杂的 MapReduce 程序。以下是 Hive 的核心特点和应…...

PyTorch系列教程:Tensor.view() 方法详解

这篇简明扼要的文章是关于PyTorch中的tensor.view()方法的介绍与应用&#xff0c;与reshape()方法的区别&#xff0c;同时给出示例进行详细解释。 Tensor基础 Tensor(张量)的视图是一个新的Tensor&#xff0c;它与原始Tensor共享相同的底层数据&#xff0c;但具有不同的形状或…...

从零开始了解Manus(文末附教程)

大家好&#xff0c;我是樱木。 《从零开始了解Manus》&#xff0c;这个教程对于想了解 Manus的同学&#xff0c;全部都在里面了&#xff01; Manus 是一款能像真人一样帮你干活的AI助手&#xff0c;运行在云端&#xff0c;不占电脑内存。 它可以自动完成复杂任务&#xff0c…...

不同开发语言之for循环的用法、区别总结

一、Objective-C &#xff08;1&#xff09;标准的c风格 for (int i 0; i < 5; i) {NSLog("i %d", i); } &#xff08;2&#xff09;for in循环。 NSArray *array ["apple", "banana", "orange"]; for (NSString *fruit in …...

CentOS 7 aarch64上制作kernel rpm二进制包 —— 筑梦之路

环境说明 centos 7 aarch64 gcc 8.3.1 kernel 5.4.290 准备编译制作 # 安装必要的工具和包yum install rpm-devel rpmdevtools yum groupinstall "Development Tools"yum install ncurses-devel bc elfutils-libelf-devel openssl-devel # 安装gcc 8.3.1# 修改…...

Cursor 使用经验,一个需求开发全流程

软件开发中 Cursor 的使用经验成为关注焦点&#xff0c;尤其是处理大型数据集的需求。用户提到“Cursor 使用经验&#xff0c;一个需求开发全流程”&#xff0c;但“Cursor”可能指数据库游标&#xff0c;涉及逐行处理数据。本文将详细探讨开发一个需求的完整流程&#xff0c;包…...

2025-03-08 学习记录--C/C++-PTA 习题9-2 计算两个复数之积

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h>struct complex{int real;int imag; …...

DeepSeek-R1本地化部署(Mac)

一、下载 Ollama 本地化部署需要用到 Ollama&#xff0c;它能支持很多大模型。官方网站&#xff1a;https://ollama.com/ 点击 Download 即可&#xff0c;支持macOS,Linux 和 Windows&#xff1b;我下载的是 mac 版本&#xff0c;要求macOS 11 Big Sur or later&#xff0c;Ol…...

【时时三省】(C语言基础)赋值语句

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 赋值语句 在C程序中,最常用的语句是:赋值语句和输入输出语句。其中最基本的是赋值语句程序中的计算功能大部分是由赋值语句实现的,几乎每一个有实用价值的程序都包括赋值语句。有的程序中的大部分语句都是赋值…...

如何提取图片文字

如何分析图片风格&#xff1a; 分析下图片是什么风格&#xff0c;用即梦AI的提示语描述。我要使用描述语去即梦生成同样的图...

3.3.2 用仿真图实现点灯效果

文章目录 文章介绍Keil生成.hex代码Proteus仿真图中导入.hex代码文件开始仿真 文章介绍 点灯之前需要准备好仿真图keil代码 仿真图参考前文&#xff1a;3.3.2 Proteus第一个仿真图 keil安装参考前文&#xff1a;3.1.2 Keil4安装教程 keil新建第一个项目参考前文&#xff1a;3.1…...

BGP 基本配置实验

实验拓扑 实验需求 按照图示配置 IP 地址&#xff0c;R1 和 R5 上使用环回口模拟业务网段&#xff0c;R2&#xff0c;R3&#xff0c;R4 的环回口用于配置 Router-id 和建立 IBGP 邻居AS 200 运行 OSPF 实现内部网络互通R1&#xff0c;R2&#xff0c;R4&#xff0c;R5 运行 BGP…...

关于 QPalette设置按钮背景未显示出来 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/146047054 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…...

## DeepSeek写水果记忆配对手机小游戏

DeepSeek写水果记忆配对手机小游戏 提问 根据提的要求&#xff0c;让DeepSeek整理的需求&#xff0c;进行提问&#xff0c;内容如下&#xff1a; 请生成一个包含以下功能的可运行移动端水果记忆配对小游戏H5文件&#xff1a; 要求 可以重新开始游戏 可以暂停游戏 卡片里的水果…...

P8662 [蓝桥杯 2018 省 AB] 全球变暖--DFS

P8662 [蓝桥杯 2018 省 AB] 全球变暖--dfs 题目 解析讲下DFS代码 题目 解析 这道题的思路就是遍历所有岛屿&#xff0c;判断每一块陆地是否会沉没。对于这种图的遍历&#xff0c;我们首先应该想到DFS。 代码的注意思想就是&#xff0c;在主函数中遍历找出所有岛屿&#xff0c…...

opentitan riscv

OpenTitan‌是一个开源的硅根信任&#xff08;Root of Trust, RoT&#xff09;项目&#xff0c;旨在使硅RoT的设计和实现更加透明、可信和安全&#xff0c;适用于企业、平台提供商和芯片制造商。该项目由lowRISC CIC管理&#xff0c;作为一个协作项目&#xff0c;旨在生产高质量…...

数据结构篇——串(String)

一、引入 在计算机中的处理的数据内容大致可分为以整形、浮点型等的数值处理和字符、字符串等的非数值处理。 今天我们主要学习的就是字符串数据。本章主要围绕“串的定义、串的类型、串的结构及其运算”来进行串介绍与学习。 二、串的定义 2.1、串的基本定义 串&#xff08;s…...

Linux系统重置密码

当root账号忘记密码时&#xff0c;如何重置密码&#xff1f;下面有两种方法可以解决该问题&#xff1a; 重置root密码 1.方法一、rd.break命令 第一步 重启系统&#xff0c;在下图所示界面中按e&#xff0c;进入编辑模式----一定要快速按&#xff0c;否则6秒后就会到登陆界面…...

Flow Matching 和 Rectified Flow的区别

Flow Matching是通过匹配目标向量场来训练CNF&#xff0c;比如通过最小化目标向量场和模型预测之间的差异。 Rectified Flow的核心思想是学习一个确定性轨迹&#xff0c;将数据分布转换为噪声分布&#xff0c;比如通过线性插值或者更复杂的路径。 推荐阅读&#xff1a; SD3的采…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...