当前位置: 首页 > news >正文

P8662 [蓝桥杯 2018 省 AB] 全球变暖--DFS

P8662 [蓝桥杯 2018 省 AB] 全球变暖--dfs

      • 题目
  • 解析
    • 讲下DFS
      • 代码

题目

在这里插入图片描述

解析

这道题的思路就是遍历所有岛屿,判断每一块陆地是否会沉没。对于这种图的遍历,我们首先应该想到DFS。

代码的注意思想就是,在主函数中遍历找出所有岛屿,将其用DFS遍历判断其所有陆地。

注意一下代码中的细节:

1.主函数每次给dfs传岛屿时,需要初始化t(记录岛屿是否会沉没
2.每次用完一个岛屿,将其重新命为其他符号,做标记(DFS核心

讲下DFS

深度优先搜索(DFS)是一种用于遍历或搜索树、图或网格结构的算法,其核心思想是“尽可能深地探索分支,直到尽头再回溯”。

适合使用DFS的场景:
1.连通区域遍历
问题类型:需要找到所有相连的区域(如岛屿、迷宫中的连通路径)。
示例:统计地图中的岛屿数量、标记病毒感染的区域。

2.路径问题
问题类型:寻找从起点到终点的所有可能路径(如迷宫、棋盘游戏)。
示例:判断迷宫是否有出口,计算八皇后问题的解法。

3.状态空间搜索
问题类型:需要穷举所有可能状态的问题(如排列组合、子集生成)。
示例:生成所有可能的括号组合、排列数字。

总结
使用DFS的时机:需要遍历所有可能路径、处理连通区域、或状态空间搜索时。

代码

#include <iostream>
#include <vector>
#include <set>
#include <cstring>
#include <algorithm>
#include <math.h>
#include <queue>
#include <climits>  // 包含INT_MAX常量
#include <cctype>
using namespace std;
int n, book[1010][1010], cnt, t, ans, sum;
char map[1010][1010];int dx[] = {1, -1, 0, 0}, dy[] = {0, 0, 1, -1};void dfs(int x, int y) {if (!t) {cnt = 0;//判断该点【陆地】是否会被淹没用t标记for (int i = 0; i < 4; i++) {if (map[x + dx[i]][y + dy[i]] != '.')cnt++;if (cnt == 4) {ans += 1;t = 1;}}}map[x][y] = '*';//标记用过的点//开始遍历岛屿上的其他点【陆地】for (int i = 0; i < 4; i++) {int nx = x + dx[i], ny = y + dy[i];//越界or不是陆地就跳出if (nx < 0 || nx >= n || ny < 0 || ny >= n || map[nx][ny] != '#')continue;//继续判断该岛屿的其他陆地dfs(nx, ny);}
}int main() {cin >> n;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> map[i][j];for (int i = 1; i < n - 1; i++) {for (int j = 1; j < n - 1; j++) {if (map[i][j] == '#') { //找到岛屿,调用dfs遍历岛屿中的所有陆地sum++;t = 0;//用于标记该岛屿是否会沉dfs(i, j);}}}cout << sum - ans << endl;//总岛屿数 - 不会沉没的岛屿数return 0;
}

相关文章:

P8662 [蓝桥杯 2018 省 AB] 全球变暖--DFS

P8662 [蓝桥杯 2018 省 AB] 全球变暖--dfs 题目 解析讲下DFS代码 题目 解析 这道题的思路就是遍历所有岛屿&#xff0c;判断每一块陆地是否会沉没。对于这种图的遍历&#xff0c;我们首先应该想到DFS。 代码的注意思想就是&#xff0c;在主函数中遍历找出所有岛屿&#xff0c…...

opentitan riscv

OpenTitan‌是一个开源的硅根信任&#xff08;Root of Trust, RoT&#xff09;项目&#xff0c;旨在使硅RoT的设计和实现更加透明、可信和安全&#xff0c;适用于企业、平台提供商和芯片制造商。该项目由lowRISC CIC管理&#xff0c;作为一个协作项目&#xff0c;旨在生产高质量…...

数据结构篇——串(String)

一、引入 在计算机中的处理的数据内容大致可分为以整形、浮点型等的数值处理和字符、字符串等的非数值处理。 今天我们主要学习的就是字符串数据。本章主要围绕“串的定义、串的类型、串的结构及其运算”来进行串介绍与学习。 二、串的定义 2.1、串的基本定义 串&#xff08;s…...

Linux系统重置密码

当root账号忘记密码时&#xff0c;如何重置密码&#xff1f;下面有两种方法可以解决该问题&#xff1a; 重置root密码 1.方法一、rd.break命令 第一步 重启系统&#xff0c;在下图所示界面中按e&#xff0c;进入编辑模式----一定要快速按&#xff0c;否则6秒后就会到登陆界面…...

Flow Matching 和 Rectified Flow的区别

Flow Matching是通过匹配目标向量场来训练CNF&#xff0c;比如通过最小化目标向量场和模型预测之间的差异。 Rectified Flow的核心思想是学习一个确定性轨迹&#xff0c;将数据分布转换为噪声分布&#xff0c;比如通过线性插值或者更复杂的路径。 推荐阅读&#xff1a; SD3的采…...

机器学习编译

一、机器学习概述 1.1 什么是机器学习编译 将机器学习算法从开发形态通过变换和优化算法使其变成部署形态。即将训练好的机器学习模型应用落地&#xff0c;部署在特定的系统环境之中的过程。 开发形态&#xff1a;开发机器学习模型时使用的形态。Pytorch,TensorFlow等通用框…...

什么是 BotGate 动态防护?

随着网络威胁日益复杂&#xff0c;传统的防护方法逐渐暴露出漏洞。BotGate 动态防护是一种结合机器人网络&#xff08;Botnet&#xff09;和动态防护技术的新兴网络安全模式。它利用大量分布式设备&#xff08;即“僵尸网络”或 Botnet&#xff09;的实时协作能力&#xff0c;快…...

Linux笔记---自定义shell

目录 前言 1. 程序框架 2. 打印命令行提示符 2.1 获取用户名(GetUserName) 2.2 获取主机名(GetHostName) 2.3 获取工作目录(GetPwd) 3. 获取命令行输入 4. 判断是否有重定向 5. 解析命令行 6. 内建命令 6.1 内建命令的特点 6.2 常见内建命令 6.3 内建命令 vs 外部命…...

大语言模型从理论到实践(第二版)-学习笔记(绪论)

大语言模型的基本概念 1.理解语言是人工智能算法获取知识的前提 2.语言模型的目标就是对自然语言的概率分布建模 3.词汇表 V 上的语言模型&#xff0c;由函数 P(w1w2 wm) 表示&#xff0c;可以形式化地构建为词序列 w1w2 wm 的概率分布&#xff0c;表示词序列 w1w2 wm…...

2025-03-08 学习记录--C/C++-C 语言 判断一个数是否是完全平方数

C 语言 判断一个数是否是完全平方数 使用 sqrt 函数计算平方根&#xff0c;然后判断平方根的整数部分是否与原数相等。 #include <stdio.h> #include <math.h>int isPerfectSquare(int num) {if (num < 0) {return 0; // 负数不是完全平方数}int sqrtNum (int)…...

八、排序算法

一些简单的排序算法 8.1 冒泡排序 void Bubble_sort(int a[] , int len){int i,j,flag,tmp;for(i=0 ; i < len-1 ; i++){flag = 1;for(j=0 ; j < len-1-i ; j++){if(a[j] > a[j+1]){tmp = a[j];a[j] = a[j+1];a[j+1] = tmp;flag = 0;}}if(flag == 1){break;}}…...

计算机网络篇:基础知识总结与基于长期主义的内容更新

基础知识总结 和 MySQL 类似&#xff0c;我同样花了一周左右的时间根据 csview 对计算机网络部分的八股文进行了整理&#xff0c;主要的内容包括&#xff1a;概述、TCP 与 UDP、IP、HTTP&#xff0c;其中我个人认为最重要的是 TCP 这部分的内容。 在此做一篇目录索引&#xf…...

nodejs学习——nodejs和npm安装与系统环境变量配置及国内加速

nodejs和npm安装与系统环境变量配置及国内加速 下载node-v22.14.0-x64.msi 建议修改为非C盘文件夹 其它步骤&#xff0c;下一步&#xff0c;下一步&#xff0c;完成。 打开CMD窗口查看安装详情 $ node -v v22.14.0 $ npm -v 10.9.2$ npm config list创建node_global和node_c…...

《打造视频同步字幕播放网页:从0到1的技术指南》

《打造视频同步字幕播放网页&#xff1a;从0到1的技术指南》 为什么要制作视频同步字幕播放网页 在数字化信息飞速传播的当下&#xff0c;视频已然成为内容输出与获取的核心载体&#xff0c;其在教育、娱乐、宣传推广等诸多领域发挥着举足轻重的作用 。制作一个视频同步字幕播…...

清华大学第八弹:《DeepSeek赋能家庭教育》

大家好&#xff0c;我是吾鳴。 之前吾鳴给大家分享过清华大学出版的七份报告&#xff0c;它们分别是&#xff1a; 《DeepSeek从入门到精通》 《DeepSeek如何赋能职场应用》 《普通人如何抓住DeepSeek红利》 《DeepSeekDeepResearch&#xff1a;让科研像聊天一样简单》 《D…...

自我训练模型:通往未来的必经之路?

摘要 在探讨是否唯有通过自我训练模型才能掌握未来的问题时&#xff0c;文章强调了底层技术的重要性。当前&#xff0c;许多人倾向于关注应用层的便捷性&#xff0c;却忽视了支撑这一切的根本——底层技术。将模型简单视为产品是一种短视行为&#xff0c;长远来看&#xff0c;理…...

C++ Primer 交换操作

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

深度学习模型组件之优化器--自适应学习率优化方法(Adadelta、Adam、AdamW)

深度学习模型组件之优化器–自适应学习率优化方法&#xff08;Adadelta、Adam、AdamW&#xff09; 文章目录 深度学习模型组件之优化器--自适应学习率优化方法&#xff08;Adadelta、Adam、AdamW&#xff09;1. Adadelta1.1 公式1.2 优点1.3 缺点1.4 应用场景 2. Adam (Adaptiv…...

使用jcodec库,访问网络视频提取封面图片上传至oss

注释部分为FFmpeg&#xff08;确实方便但依赖太大&#xff0c;不想用&#xff09; package com.zuodou.upload;import com.aliyun.oss.OSS; import com.aliyun.oss.model.ObjectMetadata; import com.aliyun.oss.model.PutObjectRequest; import com.zuodou.oss.OssProperties;…...

新品速递 | 多通道可编程衰减器+矩阵系统,如何破解复杂通信测试难题?

在无线通信技术快速迭代的今天&#xff0c;多通道可编程数字射频衰减器和衰减矩阵已成为测试领域不可或缺的核心工具。它们凭借高精度、灵活配置和强大的多通道协同能力&#xff0c;为5G、物联网、卫星通信等前沿技术的研发与验证提供了关键支持。从基站性能测试到终端设备校准…...

扩展------项目中集成阿里云短信服务

引言 在当今数字化时代&#xff0c;短信服务在各种项目中扮演着重要角色&#xff0c;如用户注册验证、订单通知、营销推广等。阿里云短信服务凭借其稳定、高效和丰富的功能&#xff0c;成为众多开发者和企业的首选。本文将详细介绍如何在项目中集成阿里云短信服务&#xff0c;帮…...

MySQL面试篇——性能优化

MySQL性能优化 在MySQL中&#xff0c;如何定位慢查询 慢查询表象&#xff1a;页面加载过慢、接口压测响应时间过长&#xff08;超过1s&#xff09;。造成慢查询的原因通常有&#xff1a;聚合查询、多表查询、表数据量过大查询、深度分页查询 方案一&#xff1a;开源工具 调试工…...

Java EE 进阶:Spring MVC(2)

cookie和session的关系 两者都是在客户端和服务器中进行存储数据和传递信息的工具 cookie和session的区别 Cookie是客⼾端保存⽤⼾信息的⼀种机制. Session是服务器端保存⽤⼾信息的⼀种机制. Cookie和Session之间主要是通过SessionId关联起来的&#xff0c;SessionId是Co…...

ShardingSphere 和 Spring 的动态数据源切换机制的对比以及原理

ShardingSphere 与 Spring 动态数据源切换机制的对比及原理 一、核心定位对比 维度ShardingSphereSpring动态数据源&#xff08;如 AbstractRoutingDataSource&#xff09;定位分布式数据库中间件轻量级多数据源路由工具核心目标分库分表、读写分离、分布式事务多数据源动态切…...

基于Django的协同过滤算法养老新闻推荐系统的设计与实现

基于Django的协同过滤算法养老新闻推荐系统&#xff08;可改成普通新闻推荐系统使用&#xff09; 开发工具和实现技术 Pycharm&#xff0c;Python&#xff0c;Django框架&#xff0c;mysql8&#xff0c;navicat数据库管理工具&#xff0c;vue&#xff0c;spider爬虫&#xff0…...

AI视频生成工具清单(附网址与免费说明)

以下是一份详细的AI视频制作网站总结清单&#xff0c;包含免费/付费信息及核心功能说明&#xff1a; AI视频生成工具清单&#xff08;附网址与免费说明&#xff09; 1. Synthesia 网址&#xff1a;https://www.synthesia.io是否免费&#xff1a;免费试用&#xff08;生成视频…...

JavaWeb学习——HTTP协议

HTTP 协议 什么是 HTTP 协议 HTTP&#xff08;超文本传输协议&#xff0c;HyperText Transfer Protocol&#xff09;是用于在客户端&#xff08;如浏览器&#xff09;和服务器之间传输超文本&#xff08;如网页、图片、视频等&#xff09;的应用层协议。它是现代互联网数据通…...

QP 问题(Quadratic Programming, 二次规划)

QP 问题&#xff08;Quadratic Programming, 二次规划&#xff09;是什么&#xff1f; QP&#xff08;Quadratic Programming&#xff0c;二次规划&#xff09;是一类优化问题&#xff0c;其中目标函数是二次型函数&#xff0c;约束条件可以是线性等式或不等式。 QP 问题是线…...

VSTO(C#)Excel开发2:Excel对象模型和基本操作

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 源码指引&#xff1a;github源…...

MySQL索引数据结构

目录 1 索引常用的数据结构 1.1 二叉树 1.2 平衡二叉树 1.3 红黑树 1.3 Hash表 1.4 B树 1.4 B树 2 MySQL索引的数据结构 2.1 MyISAM存储引擎索引 2.2 InnoDB存储引擎索引 2.2.1 聚集索引 2.2.2 非聚集索引 2.2.3 联合索引数 2.2.4 hash索引 1 索引常用的数据结构 1.1 二叉树 二…...