基于Matlab的人脸识别的二维PCA
一、基本原理
传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。
它着眼于图像矩阵的列向量,构建协方差矩阵。而后对协方差矩阵进行特征值分解,获取一系列特征值及对应的特征向量。这些特征向量即所谓的主成分,它们反映了图像数据在列方向上的主要变化趋势,按特征值大小排序,靠前的主成分携带更多关键信息。
二、优势体现
计算效率高:规避图像向一维向量转换,大幅削减计算量,能快速处理大规模图像数据,在实时人脸识别场景如安防监控的人流密集区,快速甄别人员身份,减少延迟。
空间结构保留:二维图像操作模式,完整留存图像的行列像素分布特征,面部器官的相对位置等空间关系得以保存,为人脸识别精准度提升筑牢根基,比如精准识别双胞胎细微面部差异。
三、人脸识别中的应用流程
训练阶段:收集人脸图像样本构建训练集,利用 2DPCA 计算协方差矩阵、提取主成分,将训练图像投影至主成分空间,生成特征向量并存储,形成人脸特征库。
识别阶段:新输入人脸图像经同样投影操作获取特征向量,与特征库比对,依相似性度量(如余弦相似度、欧几里得距离)判断归属类别,输出识别结果。
四、应用前景
安防监控升级:在城市监控网络,精准捕捉识别可疑人员,辅助警方快速反应,预防打击犯罪,提升公共安全保障力度。
智能设备解锁:移动端、智能门禁等设备,以 2DPCA 实现快速、准确人脸解锁,摆脱密码束缚,优化用户体验,开启便捷生活。
商业服务优化:零售、酒店等行业,依人脸识别提供个性化服务,刷脸支付、VIP 识别,增强客户粘性,革新服务模式。
尽管 2DPCA 优势显著,但其对光照、姿态、表情变化适应性有待增强。未来,融合多模态技术、深度学习优化 2DPCA,有望攻克难题,拓宽其在人脸识别及相关领域的应用边界,持续赋能数字化社会发展。

clc
clear all;
load ORL_FaceDataSet; % Loading face dataset. ORL consists of 40 classes, each comprising 10 samples
A=double(ORL_FaceDataSet);% Specifying the numbers of training and testing samples, and also the
% number of eigenvectors (DIM)
%-----------------------------------------------------------------------
Num_Class=40;
No_SampleClass=10;
No_TrainSamples=5;
No_TestSamples=5;
DIM=6; % DIM can be changed form 1 to n% Separating the dataset into training and testing sets, and then labeling.
%-------------------------------------------------------------------------------------------
[TrainData, TestData]=Train_Test(A,No_SampleClass,No_TrainSamples,No_TestSamples);
[m,n,TotalTrainSamples] = size(TrainData);
[m1,n1,TotalTestSamples] = size(TestData);
[TrainLabel,TestLabel]=LebelSamples(Num_Class, No_TrainSamples, No_TestSamples);% Computing image covariance (scatter) matrix
%-----------------------------------------------------------------------------
TrainMean = mean(TrainData,3); % Total mean of the training set
Gt=zeros([ n n]);
for i=1:TotalTrainSamplesTemp = TrainData(:,:,i)- TrainMean;Gt = Gt + Temp'*Temp;
end
Gt=Gt/TotalTrainSamples; % Applying eigen-decompostion to Gt and returning transformation matrix
%
%---------------------------------------------------------------------------------
[EigVect1,EigVal1]=eig_decomp(Gt);
EigVect=EigVect1(:,1:DIM); % Deriving training feature matrices
%----------------------------------------------------------------------------------for i=1:TotalTrainSamplesYtrain(:,:,i)=TrainData(:,:,i)*EigVect;
end% Testing and Classification
%----------------------------------------------------
TestResult = zeros(TotalTestSamples,1);for i=1:TotalTestSamplesDistance = zeros(TotalTrainSamples,1);Ytest = TestData(:,:,i)* EigVect; % Deriving test feature matrixfor j=1:TotalTrainSamples
相关文章:
基于Matlab的人脸识别的二维PCA
一、基本原理 传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。 它着眼于图像矩阵的列向量,构建协方差矩阵…...
SSM架构 +Nginx+FFmpeg实现rtsp流转hls流,在前端html上实现视频播放
序言: 本文介绍通过SSM架构 NginxFFmpeg实现rtsp流转hls流,在前端html上实现视频播放功能。此方法可用于网络摄像头RTSP视频流WEB端实时播放。(海康和大华都可以),我使用的是海康 步骤一:安装软件 FFmpeg…...
【实战ES】实战 Elasticsearch:快速上手与深度实践-3.2.3 案例:新闻搜索引擎的相关性优化
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 Elasticsearch新闻搜索引擎相关性优化实战3.2.3 案例:新闻搜索引擎的相关性优化项目背景1. 相关性问题诊断与分析1.1 初始查询DSL示例1.2 问题诊断矩阵1.3 性能基…...
SQL经典查询
查询不在表里的数据,一张学生表,一张学生的选课表,要求查出没有选课的学生? select students.student_name from students left join course_selection on students.student_idcourse_selection.student_id where course_selecti…...
体验开源openeuler openharmony stratovirt模拟器
文档 openeuler社区面向数字基础设施的开源操作系统 openharmony社区 OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目, 目标是面向全场景、全连接、全智能时代、基于开源的方式,搭建一个智能终端设备操作系统…...
【C++】:STL详解 —— 红黑树
目录 平衡二叉查找树 红黑树的概念 红黑树的五大性质 红黑树的效率 红黑树和AVL树的比较 插入与删除操作 内存与实现复杂度 经典性能数据对比 总结 对旋转的基本理解 旋转的作用 左旋(Left Rotation) 右旋(Right Rotation…...
蓝桥试题:蓝桥勇士(LIS)
一、题目描述 小明是蓝桥王国的勇士,他晋升为蓝桥骑士,于是他决定不断突破自我。 这天蓝桥首席骑士长给他安排了 N 个对手,他们的战力值分别为 a1,a2,...,an,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战…...
Trae IDE新建C#工程
目录 1 结论 2 项目结构 3 项目代码 1 结论 新建C#工程来说,Trae的Chat比DeepSeek的Coder好用。 2 项目结构 MyWinFormsApp/ │ ├── Program.cs ├── Form1.cs ├── Form1.Designer.cs ├── MyResources/ │ └── MyResources.resx └── MyWin…...
Linux基础--进程管理
目录 静态查看进程 使用命令: ps 动态查看进程 使用命令: top 关闭进程: 使用命令: kill 查看进程占用端口 使用命令: ss 编辑 查看某端口是否被进程占用 使用命令: lsof 作业管理 进程后台运行: 使用命令: jobs 将后台进程调回前台 使用指令: fg 将前台进…...
Java面向对象(详细解释)
第一章 Static关键字 1.static的介绍以及基本使用 1.概述:static是一个静态关键字 2.使用: a.修饰一个成员变量: static 数据类型 变量名 b.修饰一个方法: 修饰符 static 返回值类型 方法名(形参){…...
qt ui相关的第三方库插件库
Qt UI相关的第三方库和插件库有很多,能帮助开发者提高开发效率,扩展UI功能,增强可用性和美观度。以下是一些常见的第三方库和插件: 1. QCustomPlot 功能:用于在Qt应用程序中创建交互式的二维绘图。特点:支…...
详解动态规划算法
动态规划 一、动态规划的核心思想二、动态规划的步骤1. 定义状态(State)2. 确定状态转移方程(State Transition Equation)3. 确定边界条件(Base Case)4. 填表(Table Filling)或递归计…...
LINUX网络基础 [五] - HTTP协议
目录 HTTP协议 预备知识 认识 URL 认识 urlencode 和 urldecode HTTP协议格式 HTTP请求协议格式 HTTP响应协议格式 HTTP的方法 HTTP的状态码 编辑HTTP常见Header HTTP实现代码 HttpServer.hpp HttpServer.cpp Socket.hpp log.hpp Makefile Web根目录 H…...
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8 现在是已经到了课程的第十章了,开始进行配置项目环境了。现在要完成的任务是项目可以正常运行,而且可以自由切换配置,开发/测试。 下面是当前的目录结构图: 现在来解释一…...
华为配置篇-OSPF基础实验
OSPF 一、简述二、常用命令总结三、实验3.1 OSPF单区域3.2 OSPF多区域3.3 OSPF 的邻接关系和 LSA 置底 一、简述 OSPF(开放式最短路径优先协议) 基本定义 全称:Open Shortest Path First 类型:链路状态路由协议(IGP&…...
闭包:JavaScript 中的隐形大杀器
你可能已经在很多地方听说过闭包这个词,尤其是涉及到 JavaScript 的作用域和异步操作时。闭包是 JavaScript 中非常核心的概念,然而它又非常容易让开发者感到困惑。今天我们就来深入剖析闭包,帮助你真正理解它的工作原理,以及如何…...
【消息队列】数据库的数据管理
1. 数据库的选择 对于当前实现消息队列这样的一个中间件来说,具体要使用哪个数据库,是需要稍作考虑的,如果直接使用 MySQL 数据库也是能实现正常的功能,但是 MySQL 也是一个客户端服务器程序,也就意味着如果想在其他服…...
玩转ChatGPT:GPT 深入研究功能
一、写在前面 民间总结: 理科看Claude 3.7 Sonnet 文科看DeepSeek-R1 那么,ChatGPT呢? 看Deep Research(深入研究)功能。 对于科研狗来说,在这个文章爆炸的时代,如何利用AI准确、高效地收…...
Centos8部署mongodb报错记录
使用mongo ops安装mongodb6.0.4副本集报错 error while loading shared libraries: libnetsnmpmibs.so.35: cannot open shared object file: No such file or directory 解决 yum install net-snmp net-snmp-devel -y建议:初始化系统时把官网上的依赖包都装一遍 即…...
2024四川大学计算机考研复试上机真题
2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
