基于Matlab的人脸识别的二维PCA
一、基本原理
传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。
它着眼于图像矩阵的列向量,构建协方差矩阵。而后对协方差矩阵进行特征值分解,获取一系列特征值及对应的特征向量。这些特征向量即所谓的主成分,它们反映了图像数据在列方向上的主要变化趋势,按特征值大小排序,靠前的主成分携带更多关键信息。
二、优势体现
计算效率高:规避图像向一维向量转换,大幅削减计算量,能快速处理大规模图像数据,在实时人脸识别场景如安防监控的人流密集区,快速甄别人员身份,减少延迟。
空间结构保留:二维图像操作模式,完整留存图像的行列像素分布特征,面部器官的相对位置等空间关系得以保存,为人脸识别精准度提升筑牢根基,比如精准识别双胞胎细微面部差异。
三、人脸识别中的应用流程
训练阶段:收集人脸图像样本构建训练集,利用 2DPCA 计算协方差矩阵、提取主成分,将训练图像投影至主成分空间,生成特征向量并存储,形成人脸特征库。
识别阶段:新输入人脸图像经同样投影操作获取特征向量,与特征库比对,依相似性度量(如余弦相似度、欧几里得距离)判断归属类别,输出识别结果。
四、应用前景
安防监控升级:在城市监控网络,精准捕捉识别可疑人员,辅助警方快速反应,预防打击犯罪,提升公共安全保障力度。
智能设备解锁:移动端、智能门禁等设备,以 2DPCA 实现快速、准确人脸解锁,摆脱密码束缚,优化用户体验,开启便捷生活。
商业服务优化:零售、酒店等行业,依人脸识别提供个性化服务,刷脸支付、VIP 识别,增强客户粘性,革新服务模式。
尽管 2DPCA 优势显著,但其对光照、姿态、表情变化适应性有待增强。未来,融合多模态技术、深度学习优化 2DPCA,有望攻克难题,拓宽其在人脸识别及相关领域的应用边界,持续赋能数字化社会发展。

clc
clear all;
load ORL_FaceDataSet; % Loading face dataset. ORL consists of 40 classes, each comprising 10 samples
A=double(ORL_FaceDataSet);% Specifying the numbers of training and testing samples, and also the
% number of eigenvectors (DIM)
%-----------------------------------------------------------------------
Num_Class=40;
No_SampleClass=10;
No_TrainSamples=5;
No_TestSamples=5;
DIM=6; % DIM can be changed form 1 to n% Separating the dataset into training and testing sets, and then labeling.
%-------------------------------------------------------------------------------------------
[TrainData, TestData]=Train_Test(A,No_SampleClass,No_TrainSamples,No_TestSamples);
[m,n,TotalTrainSamples] = size(TrainData);
[m1,n1,TotalTestSamples] = size(TestData);
[TrainLabel,TestLabel]=LebelSamples(Num_Class, No_TrainSamples, No_TestSamples);% Computing image covariance (scatter) matrix
%-----------------------------------------------------------------------------
TrainMean = mean(TrainData,3); % Total mean of the training set
Gt=zeros([ n n]);
for i=1:TotalTrainSamplesTemp = TrainData(:,:,i)- TrainMean;Gt = Gt + Temp'*Temp;
end
Gt=Gt/TotalTrainSamples; % Applying eigen-decompostion to Gt and returning transformation matrix
%
%---------------------------------------------------------------------------------
[EigVect1,EigVal1]=eig_decomp(Gt);
EigVect=EigVect1(:,1:DIM); % Deriving training feature matrices
%----------------------------------------------------------------------------------for i=1:TotalTrainSamplesYtrain(:,:,i)=TrainData(:,:,i)*EigVect;
end% Testing and Classification
%----------------------------------------------------
TestResult = zeros(TotalTestSamples,1);for i=1:TotalTestSamplesDistance = zeros(TotalTrainSamples,1);Ytest = TestData(:,:,i)* EigVect; % Deriving test feature matrixfor j=1:TotalTrainSamples
相关文章:
基于Matlab的人脸识别的二维PCA
一、基本原理 传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。 它着眼于图像矩阵的列向量,构建协方差矩阵…...
SSM架构 +Nginx+FFmpeg实现rtsp流转hls流,在前端html上实现视频播放
序言: 本文介绍通过SSM架构 NginxFFmpeg实现rtsp流转hls流,在前端html上实现视频播放功能。此方法可用于网络摄像头RTSP视频流WEB端实时播放。(海康和大华都可以),我使用的是海康 步骤一:安装软件 FFmpeg…...
【实战ES】实战 Elasticsearch:快速上手与深度实践-3.2.3 案例:新闻搜索引擎的相关性优化
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 Elasticsearch新闻搜索引擎相关性优化实战3.2.3 案例:新闻搜索引擎的相关性优化项目背景1. 相关性问题诊断与分析1.1 初始查询DSL示例1.2 问题诊断矩阵1.3 性能基…...
SQL经典查询
查询不在表里的数据,一张学生表,一张学生的选课表,要求查出没有选课的学生? select students.student_name from students left join course_selection on students.student_idcourse_selection.student_id where course_selecti…...
体验开源openeuler openharmony stratovirt模拟器
文档 openeuler社区面向数字基础设施的开源操作系统 openharmony社区 OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目, 目标是面向全场景、全连接、全智能时代、基于开源的方式,搭建一个智能终端设备操作系统…...
【C++】:STL详解 —— 红黑树
目录 平衡二叉查找树 红黑树的概念 红黑树的五大性质 红黑树的效率 红黑树和AVL树的比较 插入与删除操作 内存与实现复杂度 经典性能数据对比 总结 对旋转的基本理解 旋转的作用 左旋(Left Rotation) 右旋(Right Rotation…...
蓝桥试题:蓝桥勇士(LIS)
一、题目描述 小明是蓝桥王国的勇士,他晋升为蓝桥骑士,于是他决定不断突破自我。 这天蓝桥首席骑士长给他安排了 N 个对手,他们的战力值分别为 a1,a2,...,an,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战…...
Trae IDE新建C#工程
目录 1 结论 2 项目结构 3 项目代码 1 结论 新建C#工程来说,Trae的Chat比DeepSeek的Coder好用。 2 项目结构 MyWinFormsApp/ │ ├── Program.cs ├── Form1.cs ├── Form1.Designer.cs ├── MyResources/ │ └── MyResources.resx └── MyWin…...
Linux基础--进程管理
目录 静态查看进程 使用命令: ps 动态查看进程 使用命令: top 关闭进程: 使用命令: kill 查看进程占用端口 使用命令: ss 编辑 查看某端口是否被进程占用 使用命令: lsof 作业管理 进程后台运行: 使用命令: jobs 将后台进程调回前台 使用指令: fg 将前台进…...
Java面向对象(详细解释)
第一章 Static关键字 1.static的介绍以及基本使用 1.概述:static是一个静态关键字 2.使用: a.修饰一个成员变量: static 数据类型 变量名 b.修饰一个方法: 修饰符 static 返回值类型 方法名(形参){…...
qt ui相关的第三方库插件库
Qt UI相关的第三方库和插件库有很多,能帮助开发者提高开发效率,扩展UI功能,增强可用性和美观度。以下是一些常见的第三方库和插件: 1. QCustomPlot 功能:用于在Qt应用程序中创建交互式的二维绘图。特点:支…...
详解动态规划算法
动态规划 一、动态规划的核心思想二、动态规划的步骤1. 定义状态(State)2. 确定状态转移方程(State Transition Equation)3. 确定边界条件(Base Case)4. 填表(Table Filling)或递归计…...
LINUX网络基础 [五] - HTTP协议
目录 HTTP协议 预备知识 认识 URL 认识 urlencode 和 urldecode HTTP协议格式 HTTP请求协议格式 HTTP响应协议格式 HTTP的方法 HTTP的状态码 编辑HTTP常见Header HTTP实现代码 HttpServer.hpp HttpServer.cpp Socket.hpp log.hpp Makefile Web根目录 H…...
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8 现在是已经到了课程的第十章了,开始进行配置项目环境了。现在要完成的任务是项目可以正常运行,而且可以自由切换配置,开发/测试。 下面是当前的目录结构图: 现在来解释一…...
华为配置篇-OSPF基础实验
OSPF 一、简述二、常用命令总结三、实验3.1 OSPF单区域3.2 OSPF多区域3.3 OSPF 的邻接关系和 LSA 置底 一、简述 OSPF(开放式最短路径优先协议) 基本定义 全称:Open Shortest Path First 类型:链路状态路由协议(IGP&…...
闭包:JavaScript 中的隐形大杀器
你可能已经在很多地方听说过闭包这个词,尤其是涉及到 JavaScript 的作用域和异步操作时。闭包是 JavaScript 中非常核心的概念,然而它又非常容易让开发者感到困惑。今天我们就来深入剖析闭包,帮助你真正理解它的工作原理,以及如何…...
【消息队列】数据库的数据管理
1. 数据库的选择 对于当前实现消息队列这样的一个中间件来说,具体要使用哪个数据库,是需要稍作考虑的,如果直接使用 MySQL 数据库也是能实现正常的功能,但是 MySQL 也是一个客户端服务器程序,也就意味着如果想在其他服…...
玩转ChatGPT:GPT 深入研究功能
一、写在前面 民间总结: 理科看Claude 3.7 Sonnet 文科看DeepSeek-R1 那么,ChatGPT呢? 看Deep Research(深入研究)功能。 对于科研狗来说,在这个文章爆炸的时代,如何利用AI准确、高效地收…...
Centos8部署mongodb报错记录
使用mongo ops安装mongodb6.0.4副本集报错 error while loading shared libraries: libnetsnmpmibs.so.35: cannot open shared object file: No such file or directory 解决 yum install net-snmp net-snmp-devel -y建议:初始化系统时把官网上的依赖包都装一遍 即…...
2024四川大学计算机考研复试上机真题
2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
