基于Matlab的人脸识别的二维PCA
一、基本原理
传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。
它着眼于图像矩阵的列向量,构建协方差矩阵。而后对协方差矩阵进行特征值分解,获取一系列特征值及对应的特征向量。这些特征向量即所谓的主成分,它们反映了图像数据在列方向上的主要变化趋势,按特征值大小排序,靠前的主成分携带更多关键信息。
二、优势体现
计算效率高:规避图像向一维向量转换,大幅削减计算量,能快速处理大规模图像数据,在实时人脸识别场景如安防监控的人流密集区,快速甄别人员身份,减少延迟。
空间结构保留:二维图像操作模式,完整留存图像的行列像素分布特征,面部器官的相对位置等空间关系得以保存,为人脸识别精准度提升筑牢根基,比如精准识别双胞胎细微面部差异。
三、人脸识别中的应用流程
训练阶段:收集人脸图像样本构建训练集,利用 2DPCA 计算协方差矩阵、提取主成分,将训练图像投影至主成分空间,生成特征向量并存储,形成人脸特征库。
识别阶段:新输入人脸图像经同样投影操作获取特征向量,与特征库比对,依相似性度量(如余弦相似度、欧几里得距离)判断归属类别,输出识别结果。
四、应用前景
安防监控升级:在城市监控网络,精准捕捉识别可疑人员,辅助警方快速反应,预防打击犯罪,提升公共安全保障力度。
智能设备解锁:移动端、智能门禁等设备,以 2DPCA 实现快速、准确人脸解锁,摆脱密码束缚,优化用户体验,开启便捷生活。
商业服务优化:零售、酒店等行业,依人脸识别提供个性化服务,刷脸支付、VIP 识别,增强客户粘性,革新服务模式。
尽管 2DPCA 优势显著,但其对光照、姿态、表情变化适应性有待增强。未来,融合多模态技术、深度学习优化 2DPCA,有望攻克难题,拓宽其在人脸识别及相关领域的应用边界,持续赋能数字化社会发展。

clc
clear all;
load ORL_FaceDataSet; % Loading face dataset. ORL consists of 40 classes, each comprising 10 samples
A=double(ORL_FaceDataSet);% Specifying the numbers of training and testing samples, and also the
% number of eigenvectors (DIM)
%-----------------------------------------------------------------------
Num_Class=40;
No_SampleClass=10;
No_TrainSamples=5;
No_TestSamples=5;
DIM=6; % DIM can be changed form 1 to n% Separating the dataset into training and testing sets, and then labeling.
%-------------------------------------------------------------------------------------------
[TrainData, TestData]=Train_Test(A,No_SampleClass,No_TrainSamples,No_TestSamples);
[m,n,TotalTrainSamples] = size(TrainData);
[m1,n1,TotalTestSamples] = size(TestData);
[TrainLabel,TestLabel]=LebelSamples(Num_Class, No_TrainSamples, No_TestSamples);% Computing image covariance (scatter) matrix
%-----------------------------------------------------------------------------
TrainMean = mean(TrainData,3); % Total mean of the training set
Gt=zeros([ n n]);
for i=1:TotalTrainSamplesTemp = TrainData(:,:,i)- TrainMean;Gt = Gt + Temp'*Temp;
end
Gt=Gt/TotalTrainSamples; % Applying eigen-decompostion to Gt and returning transformation matrix
%
%---------------------------------------------------------------------------------
[EigVect1,EigVal1]=eig_decomp(Gt);
EigVect=EigVect1(:,1:DIM); % Deriving training feature matrices
%----------------------------------------------------------------------------------for i=1:TotalTrainSamplesYtrain(:,:,i)=TrainData(:,:,i)*EigVect;
end% Testing and Classification
%----------------------------------------------------
TestResult = zeros(TotalTestSamples,1);for i=1:TotalTestSamplesDistance = zeros(TotalTrainSamples,1);Ytest = TestData(:,:,i)* EigVect; % Deriving test feature matrixfor j=1:TotalTrainSamples
相关文章:
基于Matlab的人脸识别的二维PCA
一、基本原理 传统 PCA 在处理图像数据时,需将二维图像矩阵拉伸为一维向量,这使得数据维度剧增,引发高计算成本与存储压力。与之不同,2DPCA 直接基于二维图像矩阵展开运算。 它着眼于图像矩阵的列向量,构建协方差矩阵…...
SSM架构 +Nginx+FFmpeg实现rtsp流转hls流,在前端html上实现视频播放
序言: 本文介绍通过SSM架构 NginxFFmpeg实现rtsp流转hls流,在前端html上实现视频播放功能。此方法可用于网络摄像头RTSP视频流WEB端实时播放。(海康和大华都可以),我使用的是海康 步骤一:安装软件 FFmpeg…...
【实战ES】实战 Elasticsearch:快速上手与深度实践-3.2.3 案例:新闻搜索引擎的相关性优化
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 Elasticsearch新闻搜索引擎相关性优化实战3.2.3 案例:新闻搜索引擎的相关性优化项目背景1. 相关性问题诊断与分析1.1 初始查询DSL示例1.2 问题诊断矩阵1.3 性能基…...
SQL经典查询
查询不在表里的数据,一张学生表,一张学生的选课表,要求查出没有选课的学生? select students.student_name from students left join course_selection on students.student_idcourse_selection.student_id where course_selecti…...
体验开源openeuler openharmony stratovirt模拟器
文档 openeuler社区面向数字基础设施的开源操作系统 openharmony社区 OpenHarmony是由开放原子开源基金会(OpenAtom Foundation)孵化及运营的开源项目, 目标是面向全场景、全连接、全智能时代、基于开源的方式,搭建一个智能终端设备操作系统…...
【C++】:STL详解 —— 红黑树
目录 平衡二叉查找树 红黑树的概念 红黑树的五大性质 红黑树的效率 红黑树和AVL树的比较 插入与删除操作 内存与实现复杂度 经典性能数据对比 总结 对旋转的基本理解 旋转的作用 左旋(Left Rotation) 右旋(Right Rotation…...
蓝桥试题:蓝桥勇士(LIS)
一、题目描述 小明是蓝桥王国的勇士,他晋升为蓝桥骑士,于是他决定不断突破自我。 这天蓝桥首席骑士长给他安排了 N 个对手,他们的战力值分别为 a1,a2,...,an,且按顺序阻挡在小明的前方。对于这些对手小明可以选择挑战…...
Trae IDE新建C#工程
目录 1 结论 2 项目结构 3 项目代码 1 结论 新建C#工程来说,Trae的Chat比DeepSeek的Coder好用。 2 项目结构 MyWinFormsApp/ │ ├── Program.cs ├── Form1.cs ├── Form1.Designer.cs ├── MyResources/ │ └── MyResources.resx └── MyWin…...
Linux基础--进程管理
目录 静态查看进程 使用命令: ps 动态查看进程 使用命令: top 关闭进程: 使用命令: kill 查看进程占用端口 使用命令: ss 编辑 查看某端口是否被进程占用 使用命令: lsof 作业管理 进程后台运行: 使用命令: jobs 将后台进程调回前台 使用指令: fg 将前台进…...
Java面向对象(详细解释)
第一章 Static关键字 1.static的介绍以及基本使用 1.概述:static是一个静态关键字 2.使用: a.修饰一个成员变量: static 数据类型 变量名 b.修饰一个方法: 修饰符 static 返回值类型 方法名(形参){…...
qt ui相关的第三方库插件库
Qt UI相关的第三方库和插件库有很多,能帮助开发者提高开发效率,扩展UI功能,增强可用性和美观度。以下是一些常见的第三方库和插件: 1. QCustomPlot 功能:用于在Qt应用程序中创建交互式的二维绘图。特点:支…...
详解动态规划算法
动态规划 一、动态规划的核心思想二、动态规划的步骤1. 定义状态(State)2. 确定状态转移方程(State Transition Equation)3. 确定边界条件(Base Case)4. 填表(Table Filling)或递归计…...
LINUX网络基础 [五] - HTTP协议
目录 HTTP协议 预备知识 认识 URL 认识 urlencode 和 urldecode HTTP协议格式 HTTP请求协议格式 HTTP响应协议格式 HTTP的方法 HTTP的状态码 编辑HTTP常见Header HTTP实现代码 HttpServer.hpp HttpServer.cpp Socket.hpp log.hpp Makefile Web根目录 H…...
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8
慕慕手记项目日志 项目从开发到部署多环境配置 2025-3-8 现在是已经到了课程的第十章了,开始进行配置项目环境了。现在要完成的任务是项目可以正常运行,而且可以自由切换配置,开发/测试。 下面是当前的目录结构图: 现在来解释一…...
华为配置篇-OSPF基础实验
OSPF 一、简述二、常用命令总结三、实验3.1 OSPF单区域3.2 OSPF多区域3.3 OSPF 的邻接关系和 LSA 置底 一、简述 OSPF(开放式最短路径优先协议) 基本定义 全称:Open Shortest Path First 类型:链路状态路由协议(IGP&…...
闭包:JavaScript 中的隐形大杀器
你可能已经在很多地方听说过闭包这个词,尤其是涉及到 JavaScript 的作用域和异步操作时。闭包是 JavaScript 中非常核心的概念,然而它又非常容易让开发者感到困惑。今天我们就来深入剖析闭包,帮助你真正理解它的工作原理,以及如何…...
【消息队列】数据库的数据管理
1. 数据库的选择 对于当前实现消息队列这样的一个中间件来说,具体要使用哪个数据库,是需要稍作考虑的,如果直接使用 MySQL 数据库也是能实现正常的功能,但是 MySQL 也是一个客户端服务器程序,也就意味着如果想在其他服…...
玩转ChatGPT:GPT 深入研究功能
一、写在前面 民间总结: 理科看Claude 3.7 Sonnet 文科看DeepSeek-R1 那么,ChatGPT呢? 看Deep Research(深入研究)功能。 对于科研狗来说,在这个文章爆炸的时代,如何利用AI准确、高效地收…...
Centos8部署mongodb报错记录
使用mongo ops安装mongodb6.0.4副本集报错 error while loading shared libraries: libnetsnmpmibs.so.35: cannot open shared object file: No such file or directory 解决 yum install net-snmp net-snmp-devel -y建议:初始化系统时把官网上的依赖包都装一遍 即…...
2024四川大学计算机考研复试上机真题
2024四川大学计算机考研复试上机真题 2024四川大学计算机考研复试机试真题 历年四川大学计算机考研复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 分数求和 题目描述 有一分数序列: 2/1 3/2 5/3 8/5 13/8 21/13… 求出这个数列的前 …...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
